Диапазон регулирования частоты вращения

Содержание

Основные сведения о частотно-регулируемом электроприводе

Диапазон регулирования частоты вращения

Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока.

 Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен.

При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор.  Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в  изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).

Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты.

Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления  позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять  при помощи различных устройств: механических вариаторов,  гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости,  неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что,  изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

 неизменном числе  пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера  момента  нагрузки Mс .  При постоянном  моменте   нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра.

Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность.

Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей.

До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного  регулирования  наглядно  видна  из рисунка 1

Таким образом, при дросселировании  поток вещества, сдерживаемый задвижкой или клапаном,  не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство  современных  преобразователей частоты построено по схеме двойного преобразования.  Они  состоят из следующих основных частей:  звена  постоянного  тока  (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра.  Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока. Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей.

Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя.

Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы  управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2).  Регулирование выходной частоты fвых. и напряжения  Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3).

Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону.

Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.

Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным  (АР) за счет изменения входного напряжения Uв  и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.

Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.

45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв  преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

https://www.youtube.com/watch?v=FGQpYrRDznou0026t=240s

И – трехфазный мостовой инвертор; В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Регулирование частоты вращения асинхронных двигателей | Электрические машины

Диапазон регулирования частоты вращения

Подробности Категория: Оборудование

Асинхронные двигатели являются основой современного электропривода переменного тока. Эффективность работы этого электропривода во многом определяется возможностями регулирования частоты вращения. Возможности асинхронных двигателей в отношении регулирования частоты вращения ротора определяются выражением

.

Из этого выражения следует, что частоту вращения можно регулировать тремя способами: путем изменения частоты , числа пар полюсов p и скольжения s. Рассмотрим каждый из этих способов подробнее.

Регулирование частоты вращения изменением частоты подводимого напряжения

Этот способ является в настоящее время наиболее перспективным. Изменение частоты осуществляется с помощью полупроводникового преобразователя частоты (рис. 4.28, а).

Одновременно с изменением частоты регулируют и напряжение , так чтобы обеспечить постоянство магнитного потока .

Из выражения, связывающего напряжение с потоком Ф,
,
следует, что напряжение необходимо регулировать пропорционально частоте

.
Отклонение от этого закона приводит к изменению потока Ф, что нежелательно. Действительно, при увеличении потока возрастает насыщение магнитной цепи, растут потери в стали и намагничивающий ток. Уменьшение потока вызывает уменьшение максимального момента двигателя и ряд других нежелательных явлений.
При механические характеристики двигателя имеют показанный на рис. 4.

28, б вид. При снижении частоты пусковой момент двигателя возрастает, а максимальный несколько снижается. Рабочее скольжение двигателя остается небольшим, что характеризует экономичный режим работы двигателя. Однако стоимость этого способа регулирования частоты вращения двигателя весьма высока, так как преобразователь частоты должен быть выполнен на полную мощность двигателя.

Регулирование частоты вращения изменением числа пар полюсов

Этот способ регулирования в отличие от предыдущего позволяет осуществить изменение частоты вращения только ступенями. Он используется в таких механизмах, как воздуходувки, транспортеры, подъемники, лифты. Двигатели с переключением числа пар полюсов называют многоскоростными.

Обычно многоскоростные асинхронные двигатели выполняются с двумя, тремя и четырьмя ступенями скоростей. Двухскоростные двигатели изготавливаются с одной обмоткой, если числа пар полюсов соответствуют следующему отношению:
.
Трех- и четырехскоростные двигатели выпускаются с двумя обмотками.

В трехскоростных двигателях только одна обмотка выполняется с переключением числа пар полюсов , а в четырехскоростных обе обмотки выполняются как двухскоростные. Обмотка ротора многоскоростных двигателей выполняется короткозамкнутой.

Для нее не требуется переключения схемы соединения, так как необходимое число пар полюсов обмотки ротора образуется автоматически полем статора.
Изменение числа полюсов осуществляется путем изменения схемы соединения секций обмотки статора. На рис. 4.29 показаны три варианта соединения секций.

Вариант «а» соответствует последовательному согласному включению секций, при этом образуется магнитное поле с полюсами. В варианте «б» вторая секция включается встречно-последовательно. Результирующее поле имеет полюса.

Мощность обмотки остается неизменной, , а момент, развиваемый двигателем, снижается в два раза, . В варианте «в» вторая секция включается встречно-параллельно.

Результирующее поле также будет иметь полюса, но мощность обмотки возрастает в два раза, а момент двигателя остается постоянным .

Таким образом, для изменения числа пар полюсов в отношении необходимо, чтобы каждая фаза обмотки состояла из двух одинаковых частей.

Когда обе части обтекаются токами одинакового направления, число полюсов , при изменении направления тока в одной из них число полюсов уменьшается вдвое, .

При переключении числа полюсов с на полюсное деление уменьшается в два раза, при этом величина фазной зоны трехфазной обмотки меняется с 60° на 120° (рис. 4.30).

Так как чередование фаз для обеих скоростей должно оставаться одинаковым, то кроме изменения направления токов в зонах необходимо поменять местами две фазы обмотки. При большем числе полюсов обмотка выполняется с диаметральным шагом . Тогда при меньшем числе полюсов . Малый шаг приводит к ухудшению использования обмотки и, следовательно, к некоторому снижению технико-экономических показателей двигателя.

Многоскоростные двигатели проектируются для различных режимов работы. Наиболее часто встречаются режимы с постоянным моментом и с постоянной мощностью . Регулирование частоты вращения с постоянным моментом обеспечивается при переключении обмотки со звезды на схему двойной звезды (рис. 4.31).

При таком переключении в два раза возрастает потребляемый из сети ток, а следовательно, и мощность двигателя , момент же при этом не меняется.

Если до переключения обмотка статора была соединена в треугольник (рис. 4.32), то после переключения ее на двойную звезду мощность двигателя практически не изменится, а момент уменьшится в два раза из-за увеличения частоты вращения.

Регулирование частоты вращения изменением скольжения

Изменять скольжение асинхронного двигателя можно разными способами: изменением подводимого к статору напряжения, введением сопротивления в цепь ротора или введением в цепь ротора дополнительной ЭДС.

При изменении напряжения статора механическая характеристика двигателя изменяется, как показано на рис. 4.33. Снижение напряжения приводит к уменьшению жесткости механической характеристики и росту скольжения. При этом частота вращения ротора снижается,
.

Регулирование частоты вращения таким способом возможно в ограниченном диапазоне изменения скольжения

.

Основным недостатком этого способа регулирования частоты вращения является низкий КПД из-за роста потерь в обмотке ротора пропорционально частоте скольжения

.

Поэтому он применяется только для двигателей малой мощности, работающих в системах автоматического управления. В двигателях с фазным ротором изменить частоту вращения можно путем изменения сопротивления в роторе (рис. 4.34).

Преимущество данного способа регулирования частоты состоит в том, что максимальный момент остается неизменным.

Важно также отметить, что часть потерь двигателя выносится в резистор, тем самым облегчается тепловой режим двигателя. В остальном способ аналогичен предыдущему и характеризуется низким КПД.

, малым диапазоном регулирования, зависящим от нагрузки, и «мягкой» механической характеристикой.

Чтобы повысить КПД двигателя при регулировании частоты вращения путем изменения скольжения, необходимо мощность скольжения использовать для совершения полезной работы или возвратить обратно в сеть. Схемы, реализующие эту идею, называются каскадными.

Одной из распространенных схем данного типа является схема асинхронно-вентильного каскада (рис. 4.35). Схема включает асинхронный двигатель с фазным ротором (АД), диодный выпрямитель (Д), сглаживающий дроссель (Др), тиристорный инвертор (И) и сетевой согласующий трансформатор (Тр).

Регулирование частоты вращения осуществляется посредством изменения напряжения инвертора. Это приводит к соответствующему изменению напряжения обмотки ротора, а следовательно, и частоты вращения ротора. Мощность частоты скольжения, извлекаемая из роторной обмотки двигателя, передается в сеть через согласующий трансформатор.

Достоинством каскадных схем регулирования частоты вращения асинхронных двигателей по сравнению с частотными схемами управления в статорной цепи (рис. 4.28) является то, что полупроводниковый преобразователь выполняется на мощность скольжения, а не на полную мощность двигателя.

Это обстоятельство особенно важно для мощных и сверхмощных приводов насосов, прессов, конвейеров, подъемных механизмов и др., где требуется ограниченный диапазон регулирования частоты вращения (2:1 и менее).

Асинхронно-вентильный каскад с неуправляемым выпрямителем допускает регулирование только вниз от синхронной частоты вращения. Если использовать управляемый выпрямитель, то можно осуществить регулирование частоты вращения вверх от синхронной. В этом случае направление передачи мощности скольжения меняется на противоположное.

Изменение оборотов асинхронного двигателя. Разбор способов регулирования

Диапазон регулирования частоты вращения

Благодаря своей простоте исполнения, относительной дешевизне и надежности трехфазные двигатели широко используются в хозяйстве и производстве.

Во многих исполнительных механизмах применяют всевозможные типы асинхронных двигателей. Для широкого спектра применения АД, необходимо изменять и регулировать скорость вращения вала двигателя.

Регулировка скорости АД производят несколькими способами. Их мы сейчас и рассмотрим.

Существуют:

  1. Механические регулирование. Путем изменения передаточного числа в редукторах.
  2. Электрическое регулирование. Изменением нескольких параметров питающего напряжения.

Рассмотрим электрическое изменение скорости АД, как более точный и распространённый способ регулирования.

Управление электрическими параметрами позволяет производить плавный запуск двигателя, поддерживать заданные параметры скорости или момента асинхронного мотора.

Параметры с помощью которых управляют мотором:

  • Частотой тока питающей сети.
  • Величиной тока в цепях мотора.
  • Напряжением на двигателе.

Самым распространённым асинхронным двигателем является мотор беличье колесо, двигатель с короткозамкнутым ротором. Для управления вращением, в этом типе электрических машин, применяют несколько видов воздействия.

  • Изменение частоты поля статора.
  • Управление величиной скольжения, изменяя напряжение питания.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой.

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Регулирование оборотов изменением числа пар полюсов

Специальные многоскоростные двигатели со сложной обмоткой регулируются путем изменения количества активных полюсов на статоре. Обмотки полюсов разбиты на группы, и чередуются, путем коммутации обмотки подключаются, то параллельно, то последовательно.

Положительные моменты данного способа.

  • Высокий КПД мотора.
  • Жесткие механические выходные параметры.

К недостаткам такого управления, можно отнести высокую стоимость электрической машин, а также значительный вес и габариты такого двигателя. Изменение оборотов происходит ступенькой 1500-3000 об/мин.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором – изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Моторы с двойным питанием через вентильные устройства

Регулировка мощности и оборотов в АД с фазным ротором происходит путем изменения величины скольжения. Управление крупными, специальными машинами происходит путем подачи и регулировкой величины ЭДС, на ротор от отдельного источника напряжения.

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов.

Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом.

А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.

Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

Диапазон регулирования частоты вращения

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наиболь­шей частоты вращения к наименьшей; экономичностью регулиро­вания, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.

Из (29.5) следует, что регулировать частоту вращения двига­теля независимого возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

(29.5)

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

, (29.12)

где — частота вращения в режиме х.х.;

— изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает , что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.

4, а): с повышением rдувеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается.

Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I2a *rД), которые интенсивно растут с увеличением мощности двигателя.

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения.

Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения [см. (29.5)]. При увеличении rрегчас­тота вращения растет.

Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения ,т. е.

падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax.

При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата  rрегнеобходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза.

Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.

Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)Iа, а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5.

Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n0 пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в).

Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением.

Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока.

Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.

6, б)известна под на­званием системы «генератор — двигатель» (Г—Д).

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

https://www.youtube.com/watch?v=3IMBqs1HFugu0026t=1s

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах.

Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время tк обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax.

Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin(при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д.

Таким образом, к обмотке якоря подводится не­которое среднее напряжение

, (29.13)

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

. (29.14)

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора.

Цепь L1C,шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1Cи создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор.

Параметрами цепи L1Cопределяется время (с) открытого состояния тиристора: . Здесь L1выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Критерии выбора преобразователя частоты

Диапазон регулирования частоты вращения

Первая и самая важная характеристика преобразователя частоты при его выборе это номинальный выходной ток. Это ток, который определяется нагрузкой двигателя.

Нельзя выбирать ПЧ по мощности по двум причинам:

  • У двигателей одинаковой мощности может быть разный ток (см. табл.

    1), который зависит от количества пар полюсов электрической машины и от коэффициента мощности.

Клиентоориентированность

Быстро отвечаем на запрос и сопровождаем клиента от первого звонка. Осуществляем поддержку после завершения проекта. Наша задача – реализовать проект, и при этом сэкономить ваше время и средства. Для нас каждый клиент является VIP-клиентом.

Оптимальные цены

Благодаря системному подходу мы выполняем только необходимые этапы разработки и производства. А хорошие взаимоотношения с поставщиками обеспечивают низкие закупочные цены. В сумме это дает лучшее ценовое предложение для Вас.

Поэтапная оплата

Организуем поэтапную оплату, чтобы вы платили только за выполненную часть работ.

Работают профессионалы

Наши специалисты имеют профильное образование и большой практический опыт разработки и внедрения автоматизированных систем в разных отраслях промышленности. Регулярно проходят повышение квалификации и обучение, как в нашем учебном центре, так и в центрах производителей оборудования.

Используем надежную технику

В наших проектах мы используем только качественные комплектующие мировых и российских производителей.

Полный комплект документов

Вы получаете вместе с оборудованием полный пакет документов: паспорт, электрические и монтажные схемы, инструкции по эксплуатации. Все элементы, провода и кабели имеют маркировку.

Табл.1.

Тип двигателя Мощность (кВт) Синхронная частота
вращения (об./мин.) Ток статора (А) KПД (%) Kоэффициент
Мощности Iпуск./Iном. АИР132M2 11 3000 21,1 88 0,9 7,5 АИР132M4 11 1500 22,2 88,5 0,85 7,5 АИР160S6 11 1000 23 87 0,82 6,5 АИР160M8 11 750 26 87 0,75 6,5
  • Большинство современных преобразователей частоты выпускаются с двойным рядом мощности.

Характер нагрузки и двойной ряд мощности

Мощность указывается для двух типов нагрузки (постоянный момент и переменный) и различается на один шаг. «Постоянный момент» предполагает, что электропривод будет способен развивать одинаковый (номинальный) крутящий момент на любой скорости и обеспечивать кратковременные перегрузки от 150% до 220% (как при пуске, так и при работе).

Такой тип нагрузки характерен для динамичных механизмов, где происходят пуски под полной нагрузкой, а также резкие изменения момента сопротивления на валу. К ним относятся например: грузо-подъемные механизмы, шнеки, дробилки, питатели и др. «Переменный момент» характерен для большинства насосов и вентиляторов, кроме поршневых, такая нагрузка еще называется «вентиляторной».

Для наглядности посмотрите характеристики ПЧ Omron (см. таблицу 2). Если сравнить таблицы 1 и 2, то можно увидеть, что для двигателя АИР160M8 (11 кВт, 750 об./мин.) подойдет ПЧ мощностью 15 кВт только в том случае, если нагрузка вентиляторная. Если же нагрузка динамичная, то придется брать ПЧ мощностью 18,5 кВт, самый мощный в серии MX2.

Таким образом, для того чтобы выбрать ПЧ очень важно знать номинальный ток двигателя и характер нагрузки.

Табл.2.

Постоянный момент (Constant Torque) Переменный момент (Variable Torque) Модель максимальная мощность
двигателя (кВт) Номинальный ток (А)максимальная мощность
двигателя (кВт) Номинальный ток (А) 0.4 1.8 0.75 2.1 3G3MX2-D4004-EC 0.75 3.4 1.5 4.1 3G3MX2-D4007-EC 1.5 4.8 2.2 5.4 3G3MX2-D4015-EC 2.2 5.5 3.0 6.9 3G3MX2-D4022-EC 3.0 7.2 4.0 8.8 3G3MX2-D4030-EC 4.0 9.2 5.5 11.1 3G3MX2-D4040-EC 5.5 14.8 7.5 17.5 3G3MX2-D4055-EC 7.5 18.0 11 23.0 3G3MX2-D4075-EC 11 24.0 15 31.0 3G3MX2-D4110-EC 15 31.0 18.5 38.0 3G3MX2-D4150-EC

Режим работы механизма предъявляет свои требования

ПЧ используется в электроприводе для регулирования скорости механизма. Критериями качества регулирования скорости являются: диапазон регулирования по скорости и точность поддержания скорости. Эти характеристики зависят от способа регулирования частоты.

В следующей таблице приведены предельные характеристики для следующих способов: вольт-частотное управление (с датчиком скорости и без него), векторное управление без датчика скорости, векторное управление с датчиком скорости (управление вектором магнитного потока).

Табл.3.

Вольт-частотное управление (U/f) Векторное управление диапазон регулирования по скорости 1:40 1:40 1:100 1:1000 точность поддержания скорости (%) 3% 0,3% 1% 0,2%

Диапазон регулирования по скорости 1:40 значит, что электропривод будет одинаково хорошо управлять нагрузкой как на номинальной частоте (50 Гц), так и в 40 раз меньшей (1,25 Гц).

Для большинства промышленных механизмов не требуется снижать скорость ниже 25 Гц, кроме того при необходимости работы на частоте ниже 25 Гц, необходимо предусмотреть принудительное охлаждение двигателя. Точность в 3% также достаточна для большинства применений.

Векторное управление без датчика дает бόльшие возможности в части реагирования на быстрое изменение нагрузки. Например, не даст провиснуть грузу на лебедке при отпускании колодок тормоза. Самый высокоточный способ – это управление вектором магнитного потока.

Этот способ предназначен для точного управления по скорости в большом диапазоне частот (1:1000), для реализации простых систем управления положением механизма, также подходит для управления моментом нагрузки (например, систем управления натяжением полотна без датчика натяжения).

Некоторые технологические требования

Для инерционных механизмов, которые периодически работают в генераторном режиме и имеют технологические требования ко времени остановки механизма или уменьшению его скорости, нужно выбирать ПЧ с возможностью подключения тормозного резистора.

Такие требования могут предъявляться для крановых механизмов, для дымососных вентиляторов и других.

Также тормозное сопротивление может понадобится если перед пуском возможно самораскручивание механизма (например вентилятор, раскручиваемый потоком воздуха)

Надежность превыше всего

Надежность работы ПЧ определяется его диагностическими возможностями и защитами. Большинство ПЧ имеет следующие защитные функции:

  • Защита двигателя от перегрева (с помощью датчика и косвенным путем);
  • Защита ПЧ от короткого замыкания в нагрузке;
  • Защита ПЧ от перегрева;
  • Защита двигателя от длительной перегрузки;
  • Защита ПЧ от перенапряжения;
  • Защита механизмов от ударных крутящих моментов;
  • Защита механизма от резонансных вибраций;
  • Защита от неправильной последовательности фаз.

Качество таких защит зависит как от аппаратной, так и от программной реализации ПЧ. На практике не все производители одинаково хорошо справляются с этой задачей. У каждого производтсва есть свои специфики, поэтому качество ПЧ можно оценить только по опыту собственной эксплуатации или довериться рекомендациям специалистов.

Мы рекомендуем прежде всего обратить внимание на ведущие фирмы, такие как: Allen Bradley, Controll Techniques, Danfoss, Lenze, Omron, Siemens, Yaskawa. Все остальные функциональные возможности ПЧ позволяют решить локальную задачу управления без использования промышленных контроллеров, и не должны являться приоритетными при покупке ПЧ.

Подытожив всё вышесказанное, повторим главные критерии при выборе преобразователя частоты:

Вернуться к списку статей

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.