Генератор укв сигналов своими руками

Содержание

Генератор на транзисторе

Генератор укв сигналов своими руками

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Работа генератора на транзисторе

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Какой генератор потянет инверторный сварочный аппарат

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца.

Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот.

Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Схемы генераторов на транзисторах

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности.

Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса.

В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Инверторный генератор или обычный: что лучше

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. особенность – отсутствие строгих требований к номиналам и форме транзисторов.

Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад.

Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах.

Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель.

Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту.

Нагрузка должна быть с высоким сопротивлением.

Схема звукового генератора

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Генераторы вч сигналов своими руками

Генератор укв сигналов своими руками

Представленная ниже, схема компактного ВЧ генератора покрывает весь диапазон частот от 0,4 до 30 MHz в одну шкалу.

Выход 50 Ом, напряжение 300mV по всему диапазону частот.

Большинство генераторов сигналов используют несколько диапазонов для того, чтобы покрыть весь спектр частот. Схема этого генератора немного отличается, он настраивает весь ВЧ диапазон от 400 кГц до более 30 МГц в одном диапазоне. Он был сконструирован для того, чтобы испытать входные части приемника и фильтры HF, должен быть компактен.

Уровень выхода генератора около 300mV 50 Ом также позволяет ему быть использованным как временный генератор для испытания смесительного диода.

Описание схемы генератора

Невозможно сразу покрыть весь ВЧ диапазон в одном ряде с традиционным LC генератором. Однако, смешивая генератор, работающий на более высокой частоте с генератором с более низкой частотой, можно достичь требуемого диапазона.

Это показано на схеме, ниже:

Генератор, контролируемый напряжением тока (VCO) работает от 48 MHz до 85 MHz. Выход VCO (100-150mVpp 50 Ом) смешан с выходом кварцевого генератора 48 MHz в смесителе диода для того, чтобы дать необходимый выход частоты.

С помощью варикапа (varicap) происходит перестройка частоты по всему диапазон. Устройство, которое я использовал взято из старого тюнера видеомагнитофона. Другие варикапы широкого диапазона, такие как Motorola MV104 или Philips BB911, также будут хорошо работать.

48 МГц кварцевый генератор является типичным, его можно найти в старом принтере, видеокарте и т.п. Они генерируют сигнал прямоугольных TTL-уровня (5 В). Я нашел два пластиковых осциллятора 48 МГц в старом принтере Epson.

Выход кварцевого генератора, который я использовал, не мог напрямую управлять диодным смесителем, но комбинация серии C5 и R3, керамический конденсатор 1000pF и резистор 100 Ом, работала хорошо. Выход прямоугольной волны также идеален для смесителей диода.

Использование генератора 48 МГц, в результате чего ГУН диапазона, во многом зависит от наличия соответствующей части.

Если Вы хотите заменить детали и изменить конструкцию в соответствии с требованиями, частота выхода должна быть достаточно высокой, чтобы обеспечить требуемый диапазон 30 МГц в пределах одного диапазона. Маловероятно, что какой-либо более низкий частотный диапазон будет успешным.

Кроме того, кварцевый генератор, который устанавливает нижнюю частотную границу диапазона должен быть достаточно далеко от верхней выходной частоты 30 МГц, чтобы простой 3-х полюсный фильтр нижних частот мог фильтровать любой остаточный сигнал генератора 48 МГц, а также суммарный компонент выхода смесителя. Данная схема генератора выдает до 35 МГц с выходом около 3 дБ.

SRA-1 двойной сбалансированный микшер (дБм) M1. Здесь отлично будут работать различные варианты диодного типа, в том числе из диодов 1N4148 и пары ферритовых колец.

Желаемый (разностный) выход фильтруется с помощью 3-полюсного эллиптического фильтра.

Отфильтрованный выходной сигнал усиливается на 20 дБ ERA-5 — монолитный интегральный усилитель, чтобы дать выходе уровень сигнала 300 – 400 мВ на 50 Ом. Я использовал версию усилителя ERA-5 для поверхностного монтажа.

Питание схемы 12В 100mA.

Вид внутри

Детали припаяны навесным монтажом.

Корпус спаян из жестяной банки, используемой для формирования стенок коробки.

Настройка генератора

Ручная настройка в широком диапазоне спектра частот требует многовиткового прецизионного переменного проволочного резистора.

https://www.youtube.com/watch?v=h-60ssb7iv8

Чтобы добавить ручку управления, я использовал части потенциометра регулировки громкости AM/FM-радио. Большинство из этих потенциометров громкости, похожи, имеют тонкую ручку с регулировкой по краю, которая навинчивается крошечным винтом на латунный стержень.

Монтаж

Собирается схема непосредственно на небольшом куске фольгированного текстолита всего за несколько часов. Генератор 48 MHz (от Epson SG-615) был установлен на плате вверх ногами. Ферритовые кольца используются в качестве высокочастотных дросселей для питания на каждом этапе схемы.

Многовитковый триммер приклеивается к печатной плате немного выше, чтобы можно было одеть ручку настройки и она свободно вращалась.

Коробка была изготовлена из оловянной пластины, разрезана на полосу шириной 18 мм и припаяна по краю печатной платы. Макет передней панели был разработан в CorelDraw, распечатан и покрыт контактным пластиком, чтобы сделать его более прочным.

Моточные данные катушек

L1 — 8 витков провода 24SWG намотанной на 5 мм каркасе с ферритовым стержнем для подсторйки.. L2 — 8 витков провода 28SWG намотанном на тороиде T25-10 L3 — 7 витков провода 28SWG намотанном на тороиде T25-10

T1 — 10 витков в два провода 28SWG намотанном на тороиде T25-10

Заключение

Генератор не сложен и быстр для построения. Схема использует не большое количество доступных деталей. Многие компоненты могут быть заменены.

Чтобы проверить это, я построил другую версию, используя LM375 IC в качестве VCO (это устаревший чип, похожий на MC1648 Motorola).

Самодельный смеситель, сделанный с диодами 1N4148 и дискретный широкополосный усилитель 20 dB. Всё это дало аналогичные результаты.

Стабильность схемы не эквивалентна кварцевому или синтезированному осциллятору, а настройка в определенных диапазонах получилась сжатая, но она подходит для большинства измерений. Если Вы хотите, можно добавить дополнительный элемент управления «тонкая настройка».

ZL2PD — Single Span HF Test Oscillator

П О П У Л Я Р Н О Е:

Данный прибор предназначен для людей, у которых малоподвижный образ жизни, болезни или просто лень. Они атрофируют мышцы, уменьшается кровоснабжение мышц и органов.

Биологически активные точки (точки акупунктуры) теряют связь между собой, что приводит к нарушению обмена энергией между ними. Это чревато новыми болезнями и ухудшением самочувствия. Если лень можно и надо прогнать, то для больных людей и для людей, ведущих вынужденный малоподвижный образ жизни, например на работе, предназначен нейростимулятр.

Его можно купить, а можно просто сделать самому из доступных деталей.

Принцип работы кондиционера

Сплит-система (кондиционер) есть сейчас почти в каждом доме. Давайте разберемся — как же работает сплит-система (кондиционер)?

Полей цветы!

Домашние цветы очищают воздух в квартире, украшают быт. А уход за ними несложен — требуется лишь изредка поливать их. Но иногда полив бывает либо недостаточным, либо чрезмерным. Подробнее…

Источник

ВЧ-генератор сигналов с частотомером

В журнале «Радио», 1997, № 6 на с. 48 и 49 было опубликовано в рубрике «За рубежом» описание «Простого широкополосного генератора сигналов ВЧ», которое меня заинтересовало.

Собранный по схеме из этой статьи генератор работал без замечаний, поддерживая определённый уровень сигнала на выходе почти независимо от частоты.

Чтобы превратить изготовленную плату в полноценный сигнал-генератор, нужно было поместить её в корпус и проградуировать шкалу переменного конденсатора, но руки до этого не дошли. Кроме того, очень трудно оказалось точно устанавливать необходимую частоту без частотомера.

Когда в продаже появились недорогие цифровые частотомеры, предназначенные для встраивания в различную аппаратуру, я решил объединить такой частотомер с уже готовым генератором. Кроме того, расширил возможности этого генератора, предусмотрев в нём амплитудную и частотную модуляцию выходного сигнала.

Схема прибора изображена на рис. 1. В качестве основного органа установки частоты в нём применён переменный конденсатор C1 с твёрдым диэлектриком от переносного приёмника.

Дополнение его варикапом VD1 позволило осуществить плавную подстройку частоты и частотную модуляцию. Для повышения предельной генерируемой частоты предусмотрено отключение переменного конденсатора C1 выключателем SA1.

При этом остаётся возможной перестройка генератора варикапом VD1.

Рис. 1. Схема прибора

Если вставить в гнездо XS1 штекер внешнего источника модулирующего сигнала, контакты этого гнезда разорвут цепь подачи сигнала внутреннего генератора НЧ и генератор ВЧ будет модулирован внешним сигналом. Если этот сигнал имеет пилообразную форму, то в режиме ЧМ генерируется ВЧ-сигнал качающейся частоты, который можно использовать для проверки и настройки полосовых фильтров.

Переменным резистором R24 регулируют амплитуду ВЧ-сигнала на выходе генератора, но поскольку этот резистор находится под потенциалом плюсовой линии питания, сигнал подан с него на разъём XW2 через конденсаторы C13 и C18.

Генератор, частотомер и блок сетевого питания удалось уместить в общий корпус размерами 200х100х х40 мм. Расположение в нём плат и других деталей показано на рис. 3.

В качестве источника постоянного напряжения 12 В можно использовать любой сетевой блок питания на это напряжение и ток не менее 0,3 А. Я применил готовую плату от ИБП.

Различные готовые блоки питания можно использовать и отдельно, не помещая их в корпус генератора, и этим уменьшить размеры прибора.

Рис. 3. Расположение плат и других деталей в корпусе прибора

Все детали прибора размещены на листе фольгированного стеклотекстолита размерами 200×100 мм, который служит и лицевой панелью прибора (рис. 4).

Рис. 4. Лицевая панель прибора

Самодельный ВЧ генератор с 1 шкалой

Генератор укв сигналов своими руками

Представленная ниже, схема компактного ВЧ генератора покрывает весь диапазон частот от 0,4 до 30 MHz в одну шкалу.

Выход 50 Ом, напряжение 300mV по всему диапазону частот.

Большинство генераторов сигналов используют несколько диапазонов для того, чтобы покрыть весь спектр частот. Схема этого генератора немного отличается, он настраивает весь ВЧ диапазон от 400 кГц до более 30 МГц в одном диапазоне. Он был сконструирован для того, чтобы испытать входные части приемника и фильтры HF, должен быть компактен.

Уровень выхода генератора около 300mV 50 Ом также позволяет ему быть использованным как временный генератор для испытания смесительного диода.

Описание схемы генератора

Невозможно сразу покрыть весь ВЧ диапазон в одном ряде с традиционным  LC генератором. Однако, смешивая генератор, работающий на более высокой частоте с генератором с более низкой частотой, можно достичь требуемого диапазона.

Это показано на схеме, ниже:

Генератор, контролируемый напряжением тока (VCO) работает от 48 MHz до 85 MHz. Выход VCO (100-150mVpp 50 Ом) смешан с выходом кварцевого генератора 48 MHz в смесителе диода для того, чтобы дать необходимый выход частоты.

С помощью варикапа (varicap) происходит перестройка частоты по всему диапазон. Устройство, которое я использовал взято из старого тюнера видеомагнитофона. Другие варикапы широкого диапазона, такие как Motorola MV104 или Philips BB911, также будут хорошо работать.

48 МГц кварцевый генератор является типичным, его можно найти в старом принтере, видеокарте и т.п. Они генерируют сигнал прямоугольных TTL-уровня (5 В). Я нашел два пластиковых осциллятора 48 МГц в старом принтере Epson.

Выход кварцевого генератора, который я использовал, не мог напрямую управлять диодным смесителем, но комбинация серии C5 и R3, керамический конденсатор 1000pF и резистор 100 Ом, работала хорошо. Выход прямоугольной волны также идеален для смесителей диода.

Использование генератора 48 МГц, в результате чего ГУН диапазона, во многом зависит от наличия соответствующей части.

Если Вы хотите заменить детали и изменить конструкцию в соответствии с требованиями, частота выхода должна быть достаточно высокой, чтобы обеспечить требуемый диапазон 30 МГц в пределах одного диапазона. Маловероятно, что какой-либо более низкий частотный диапазон будет успешным.

Кроме того, кварцевый генератор, который устанавливает нижнюю частотную границу диапазона должен быть достаточно далеко от верхней выходной частоты 30 МГц, чтобы простой 3-х полюсный фильтр нижних частот мог фильтровать любой остаточный сигнал генератора 48 МГц, а также суммарный компонент выхода смесителя. Данная схема генератора выдает до 35 МГц с выходом около 3 дБ.

SRA-1 двойной сбалансированный микшер (дБм) M1. Здесь отлично будут работать различные варианты диодного типа, в том числе из диодов 1N4148 и пары ферритовых колец.

Желаемый (разностный) выход фильтруется с помощью 3-полюсного эллиптического фильтра.

Отфильтрованный выходной сигнал усиливается на 20 дБ ERA-5 — монолитный интегральный  усилитель, чтобы дать выходе уровень сигнала 300 – 400 мВ на 50 Ом. Я использовал версию усилителя ERA-5 для поверхностного монтажа.

Питание схемы 12В 100mA.

Вид внутри

Детали припаяны навесным монтажом.

Корпус спаян из жестяной банки, используемой для формирования стенок коробки.

Настройка генератора

Ручная настройка в широком диапазоне спектра частот требует многовиткового прецизионного переменного проволочного резистора.

https://www.youtube.com/watch?v=h-60ssb7iv8

Чтобы добавить ручку управления, я использовал части потенциометра регулировки громкости AM/FM-радио. Большинство из этих потенциометров громкости, похожи, имеют тонкую ручку с регулировкой по краю, которая навинчивается крошечным винтом на латунный стержень.

Схемы генераторов высокой частоты (ВЧ)

Генератор укв сигналов своими руками

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать. В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

Классика жанра — генератор ВЧ

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2).

Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе.

Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератораR2 – задает смещение базыC1, L1 – колебательный контур

C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1.

Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается.

Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,А дальше видим каждой твари по паре:Два транзистора: VT1, VT2Два конденсатора обратной связи: С2, С3

Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков

Все своими руками Генератор сигналов ГУК-1 | Все своими руками

Генератор укв сигналов своими руками

     Недавно мне принесли в ремонт генератор ГУК-1. Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

      Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора.

Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1).

По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

     Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ.

Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
      Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1.

В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.

ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:• 1 поддиапазон 150 — 340 кГц• II 340 — 800 кГц• III 800 — 1800 кГц• IV 4,0 — 10,2 мГц
• V 10,2 — 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.4. Генератор обеспечивает следующие виды работ:а) непрерывная генерация;б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.5. Глубина модуляции не менее 30%.6. Выходное сопротивление ВЧ генератора не более 200 Ом.7.

НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.8. Допустимое отклонение частоты НЧ генератора не более ±10%.9. Выходное сопротивление НЧ генератора не более 600 Ом.10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.11. Время самопрогрева прибора — 10 минут.

12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

Генератор низкой частоты

     Генератор НЧ собран на транзисторах VT1 и VT3.

Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12.).

Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1.

На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

Генератор высокой частоты

      ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала.

Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа.

Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета Т-аттенюаторов и П-аттенюаторов. Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Скачать “Генератор ГУК” GUK-1.rar – Загружено 2687 раз – 118 КБ

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.

FM модуляция в генераторе ГУК-1

     Еще одна идея модернизации генератора ГУК-1, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона.

И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным.

Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона.

Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить.

Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Сигнал-генератор 80 – 900 MHz

Генератор укв сигналов своими руками

Сергей
p-45 (at) mail.ru
http://p-45.narod.ru/

Лаборатория радиолюбителя своими руками

О проекте

При настройке приемников (да и многих других устройств) часто требуется источник сигнала с требуемой и заранее известной частотой, часто для этого используется сигнал вещательных радиостанций, естественно это не совсем удобно.

Желание купить сигнал-генератор было убито слишком большой ценой, и тогда возникла идея сделать такой генератор сигналов своими руками. В интернете встретилась страничка с сигнал-генератором из тв-тюнера (из телевизионного селектора каналов), к сожалению ни схемы, ни подробного описания там нет.

Эксперименты с селекторами каналов фирмы SELTEKA подвигли на изготовление подобного устройства, получилось легко и очень быстро – генератор был сделан за 2 дня.

Основные характеристики сигнал-генератора

Диапазон частот80 МГц – 900 МГц
Шаг перестройки по частоте 50кГц 100кГц 250кГц 500кГц
Режим модуляцииБез модуляции, AM, NFM, WFM
Количество фиксированных частот 16
Напряжение питания 7В – 9В
Потребляемый ток 120 мА

Конструкция

Внешний вид генератора:

Генератор размещен в пластмассовом корпусе G738 из магазина “Чип и Дип”.

Вид без верхней крышки:

Конструктивно генератор как и приемник P-45 сделан на одной плате размером 100мм X 115мм из фольгинированного с двух сторон стеклотекстолита толщиной 1,5 мм. Печатная плата изготовлена методом “лазерного принтера и утюга”.

  • Файл с рисунком печатной платы для программы Sprint Layout 3.0

Травится только одна сторона платы – нижняя (сторона SMD деталей). Фольга с верхней стороны предстовляет собой сплошную “землю”, которая в нескольких местах с помощью перемычек соединяется с “землеными” проводниками другой стороны (эти места отмечены красными кружочками). Отверстия для “нормальных” деталей со стороны сплошной “земли” зенкуются сверлом 2,5 мм или 3,0 мм.

Вид со стороны SMD элементов:

Большинство деталей используемых в генераторе – SMD элементы (элементы для поверхностного монтажа)

Схема генератора

В принципиальной схеме могут быть неточности – она “срисовывалась” с работающего прибора, соответственно в файле с рисунком платы ошибок нет (одна была – исправлена, это про проводок на фото).

Доработка селектора KS-H-132

Собственно именно доработка селектора каналов KS-H-132 от SELTEKA и превращает его в генератор.
Самое сложное в этом деле – это открыть корпус KS-H-132 , потому как он запаян, причем запаяны обе крышки.

Если будете вскрывать – имейте ввиду что без паяльника в 60 – 100 ватт не обойтись (при вскрытии этого экземпляра использовался 100 ватный), и учтите там где всего одна пайка – это крышка со стороны катушек, а где их немеряно – это сторона печати и SMD деталей, и надо быть осторожным чтобы все это хозяйство не повредить.

Вид со стороны катушек:

Здесь надо удалить две катушки – их бывшие места отмечены красными “завитушками”.

Вид со стороны SMD деталей и сделанными доработками:

С этой стороны удаляем несколько SMD деталей – эти места отмечены красными прямоугольниками, затем надо резрезать три проводника – место отмечено белым кружком и стрелкой.

Затем припаять проводок – соединить выход генератора с буферным каскадом (он-же модулятор AM и регулятор уровня сигнала на выходе). И подать питание на этот самый буферный каскад с помощью сопротивления 47 ом – 75 ом …

(помечен белой стрелкой) Последнее – проводок который соединит выход буфера с выходным разъемом (а раньше он был входным), места пайки помечены белыми стрелками. Этот проводок проходит со стороны катушек.

Возможно предложенная доработка не самая совершенная – есть поле для творчества.

Детали

Основная деталь устройства – селектор каналов KS-H-132 , – для того чтобы селектор каналов превратить в генератор необходимо чтобы он был сделан с использованием двух микросхем, одна – это смеситель/гетеродин (TDA5736), вторая – синтезатор частоты (TSA5522).

Селекторы KS-H-144 , KS-H-146 , KS-H-148 – для этой цели не годятся.

К сожалению корпус KS-H-132 (как уже сказано выше) запаян, что существенно усложняет доработку, если уважаемой публике известны аналогичные селекторы, но с легко снимаемыми крышками – просьба сообщить на адрес p-45(собака)mail.ru .

В качестве управляющего микроконтроллера используется PIC16F630 или PIC16F676 фирмы MICROCHIP , последний отличается тем что имеет 5-канальный аналого-цифровой преобразователь на борту (в данной конструкции не используется).

  • Файл с прошивкой для сигнал генератора.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.