Характеристика элементарных частиц входящих в состав атома

Содержание

Основы строения атома. Просто о сложном

Характеристика элементарных частиц входящих в состав атома

Все в мире состоит из атомов. Но откуда они взялись, и из чего состоят сами? Сегодня отвечаем на эти простые и фундаментальные вопросы. Ведь многие люди, живущие на планете, говорят, что не понимают строения атомов, из которых сами и состоят.

Естественно, уважаемый читатель понимает, что в данной статье мы стараемся изложить все на максимально простом и интересном уровне, поэтому не «грузим» научными терминами.

Тем, кто хочет изучить вопрос на более профессиональном уровне, советуем читать специализированную литературу.

Тем не менее, сведения данной статьи могут сослужить хорошую службу в учебе и просто сделать Вас более эрудированными.

Атом – это частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, которая является носителем его свойств. Иными словами, это мельчайшая частица того или иного вещества, которая может вступать в химические реакции.

История открытия и строение

Понятия атома было известно еще в Древней Греции. Атомизм – физическая теория, которая гласит, что все материальные предметы состоят из неделимых частиц. Наряду с Древней Грецией, идеи атомизма параллельно развивался еще и в Древней Индии.

Не известно, рассказали тогдашним философам об атомах инопланетяне, или они додумались сами, но экспериментально подтвердить данную теорию химики смогли много позже – только в семнадцатом веке, когда Европа выплыла из пучины инквизиции и средневековья.

Долгое время господствующим представлением о строении атома было представление о нем как о неделимой частице. То, что атом все-таки можно разделить, выяснилось только в начале двадцатого века.

Резерфорд, благодаря своему знаменитому опыту с отклонением альфа-частиц, узнал, что атом состоит из ядра, вокруг которого вращаются электроны.

 Была принята планетарная модель атома, в соответствии с которой электроны вращаются вокруг ядра, как планеты нашей Солнечной системы вокруг звезды.

Планетарная модель

Современные представления о строении атома продвинулись далеко. Ядро атома, в свою очередь, состоит субатомных частиц, или нуклонов – протонов и нейтронов. Именно нуклоны составляют основную массу атома. При этом протоны и нейтроны также не являются неделимыми частицами, и состоят из фундаментальных частиц – кварков.

Ядро атома имеет положительный электрический заряд, а электроны, вращающиеся по орбите – отрицательный. Таким образом, атом электрически нейтрален.

Ниже приведем элементарную схему строения атома углерода.

Схема строения атома

Масса

Массу атомов принято измерять в атомных единицах массы – а.е.м.  Атомная единица массы представляет собой массу 1/12 части свободно покоящегося атома углерода, находящегося в основном состоянии.

В химии для измерения массы атомов используется понятие “моль”. 1 моль – это такое количество вещества, в котором содержится число атомов, равное числу Авогадро.

Размер

Размеры атомов чрезвычайно малы. Так, самый маленький атом – это атом Гелия, его радиус – 32 пикометра. Самый большой атом – атом цезия, имеющий радиус 225 пикометров. Приставка пико означает десять в минус двенадцатой степени! То есть , если 32 метра уменьшить в тысячу миллиардов раз, мы получим размер радиус атома гелия.

При этом, масштабы вещей таковы, что, по сути, атом на 99% состоит из пустоты. Ядро и электроны занимают крайне малую часть его объема. Для наглядности, рассмотрим такой пример.

Если представить атом в виде олимпийского стадиона в Пекине (а можно и не в Пекине, просто представьте себе большой стадион), то ядро этого атома будет представлять собой вишенку, находящуюся в центре поля.

Орбиты электронов при этом находились бы где-то на уровне верхних трибун, а вишня весила бы 30 миллионов тонн. Впечатляет, не так ли?

Если предсавить атом в виде стадиона, ядро будет размером с вишню в центре поля

Откуда взялись атомы?

Как известно, сейчас различные атомы сгруппированы в таблицу Менделеева. В ней насчитывается 118 (а если с предсказанными, но еще не открытыми элементами – 126) элементов, не считая изотопов. Но так было далеко не всегда.

В самом начале формирования Вселенной никаких атомов не было и подавно, существовали лишь элементарные частицы, под воздействием огромных температур взаимодействующие между собой. Как сказал бы поэт, это был настоящий апофеоз частиц.

 В первые три минуты существования Вселенной, из-за понижения температуры и совпадения еще целой кучи факторов, запустился процесс первичного нуклеосинтеза, когда из элементарных частиц появились первые элементы: водород, гелий, литий и дейтерий (тяжелый водород).

Именно из этих элементов образовались первые звезды, в недрах которых проходили термоядерные реакции, в результате которых водород и гелий «сгорали», образуя более тяжелые элементы.

Если звезда была достаточно большой, то свою жизнь она заканчивала так называемым взрывом «сверхновой», в результате которого атомы выбрасывались в окружающее пространство. Так и получилась вся таблица Менделеева.
Вселенная

Так что, можно сказать, что все атомы, из которых мы состоим, когда-то были частью древних звезд.

Почему ядро атома не распадается?

В физике существует четыре типа фундаментальных взаимодействий между частицами и телами, которые они составляют. Это сильное, слабое, электромагнитное и гравитационное взаимодействия.

Именно благодаря сильному взаимодействию, которое проявляется в масштабах атомных ядер и отвечает за притяжение между нуклонами, атом и является таким «крепким орешком».

Не так давно люди поняли, что при расщеплении ядер атомов высвобождается огромная энергия. Деление тяжелых атомных ядер является источником энергии в ядерных реакторах и ядерном оружии.

Ядерный взрыв

Итак, друзья, познакомив Вас со структурой и основами строения атома, нам остается только напомнить о том, что наши авторы готовы в любой момент прийти Вам на помощь.

Не важно, нужно Вам выполнить диплом по ядерной физике, или самую маленькую контрольную – ситуации бывают разные, но выход есть из любого положения.

Подумайте о масштабах Вселенной, закажите работу в Zaochnik и помните – нет поводов для беспокойства.

Как устроен атом простыми словами?

Характеристика элементарных частиц входящих в состав атома

Атомы – мельчайшие частицы, из которых состоит все вокруг: все, что нас окружает, состоит из молекул, состоящих из атомов. Их невозможно увидеть с использованием каких бы то ни было увеличительных приборов в силу их невероятно маленьких размеров. Но ведь атомы тоже должны из чего-то состоять.

Значит, должны существовать еще более маленькие частицы. Сразу говорю, это довольна непростая для понимания тема, поэтому текста много, да и читать нужно вдумчиво. Тем не менее, это крайне увлекательно – знать о настолько малых частицах, которые невозможно даже увидеть.

Что ж, давайте разбираться!

Немного о самом атоме

Вообще, термин “атом” был изобретен очень давно: за 400 лет до н. э. греческий философ Демокрит выдвинул идею, что вещество можно делить до тех пор, пока не будут получены его наименьшие возможные частицы, названные атомами.

Конечно, в гипотезе Демокрита атомы являются совсем не тем, чем их считают сейчас, но, тем не менее, идея атомизма очень древняя. В 1808 г. химик Джон Дальтон сформулировал атомистическую теорию: все вещества состоят из атомов, мельчайших неделимых частиц, которые нельзя ни создать, ни уничтожить.

Также, Дальтон утверждал, что атомы одного и того же элемента абсолютно одинаковы. Так зародилась атомистическая теория, и было заложено начало к изучению самих атомов.

Теперь немного о характеристиках атома. Не для кого не секрет, что атом чрезвычайно мал. Но даже его можно измерить – а именно указать его массу и диаметр. Диаметры атомов в среднем – 0,2 нм (0,0000000002 м).

Массы рознятся сильнее: от 10 в минус 27 степени (ноль с двадцатью шестью нолями и единицей после запятой) кг до 10 в минус 25 степени ( ноль с двадцатью четырьмя нолями и единицей после запятой) кг.

Для избежания участия столь малых цифр в расчетах, массы атомов обычно выражают в атомных единицах массы (а. е. м.). 1 а. е. м. = 1,661 на 10 в минус 27 степени.

Какие частицы входят в состав атома?

Мы уже представляли себе атом таким, каким его рисуют в sci-fi фильмах: ядро, состоящее из протонов и нейтронов в центре, и электроны, вращающиеся вокруг ядра. Но что представляют из себя протоны, нейтроны и электроны?

Строение атома из фильмов, отражающее частицы, входящие в него

Нейтрон – это элементарная незаряженная частица. Электрический заряд равен 0 е, масса равна 1 а. е. м. Нейтрон был открыт в 1932 г. Чедвиком в ходе ядерной реакции между атомами бериллия и гелия. Нейтрон входит в состав атомного ядра

Протон – это элементарная положительная частица. Электрический заряд равен +1 е, масса равна 1 а. е. м. Открыт в 1919 г. Резерфордом. Входит в состав атомного ядра вместе с нейтроном, представляет собой ядро атома водорода.

Электрон – это элементарная отрицательная частица. Электрический заряд равен -1 е (равен по модулю заряду протона), масса равна 0,00054 а. е. м.

, поэтому для простоты расчетов считается, что электрон не имеет массы. Открыт в 1897 г. Томсоном при изучении поведения катодных лучей (электронов) в магнитном и электрическом поле.

Электроны не входят в состав ядра, а находятся снаружи, двигаясь по специальным траекториям, но об этом позднее.

Как частицы располагаются в атоме?

Ученые Гейгер и Марсден в 1909 г. проводили бомбардировку золотой фольги альфа-частицами (ядрами гелия). Частицы проходили через фольгу, как и ожидалось, однако, малая их часть отражалась обратно. Примерно 1 из 8000 частиц отскакивали.

Был сделан вывод, что частицы сталкиваются с положительными и тяжелыми центрами, которые должны располагаться в ничтожно малой части атома, раз так мало частиц отражается обратно. Так появилось представление об атомном ядре: отражались только те частицы, которые сталкивались с ядрами.

Таким образом, атомное ядро имеет намного меньший размер, чем сам атом; остальное пространство в атоме занимают электроны. И если с ядром все понятно – лишь малая часть атома, состоящая из протонов и нейтронов, то с электронами все сложнее.

В 1925 г. Шредингер сформулировал свое уравнение, названное в его честь. Оно позволяло проследить поведение электрона в атоме.

Однако, в силу принципа неопределенности Гейзенберга (электрон обладает частично-волновым дуализмом) нельзя определить точное положение электрона и его скорость. Можно лишь говорить об области пространства, где электрон находится чаще.

Так появился термин атомная орбиталь – это место, где вероятность нахождения электрона составляет больше 90%. Вот и получаем первое различие с изображениями из фильмов: там электроны вращаются вокруг ядра, оставляя следы в виде полосок.

На деле электроны как бы расплываются вокруг ядра. Физик Бор сформулировал постулат о том, что электроны могут обладать определенным количеством энергии, а не произвольным. Так были введены квантовые числа:

  • главное квантовое число (n, положительное целое число – 1, 2, 3…) характеризует энергетический уровень электрона и указывает число подуровней на уровне;
  • орбитальное квантовое число (l, неотрицательное целое число – 0, 1, 2…) характеризует форму атомной орбитали, на которой находится электрон;
  • магнитное квантовое число (ml, целое число от -l до +l) характеризует количество атомных орбиталей на энергетическом подуровне;
  • спиновое квантовое число (ms, значения – либо -1/2, либо +1/2) характеризует вращение электрона относительно собственной оси.

У каждого электрона в атоме свой набор квантовых чисел, на основании которых можно оценить его энергию, по которой можно судить о его местоположении в атоме.

В заполнении электронами атомных орбиталей участвуют некоторые закономерности. Одна из них – это запрет Паули.

Он гласит о том, что в атоме не может быть двух электронов с одинаковыми наборами всех квантовых чисел, т. е. обладающих одинаковыми энергиями.

Немного об атомных орбиталях

Другое отличие реального атома от киношного изображения – это изображение атомных орбиталей. На картинках электроны движутся по окружностям.

В реальности электроны не только расплываются, но и делают это по определенной области – орбитали. На каждой атомной орбитали может находится только 2 электрона.

Всего различают 5 видов орбиталей в зависимости от значения орбитального квантового числа l:

  • l = 0 – s-орбиталь;
  • l = 1 – p-орбиталь;
  • l = 2 – d-орбиталь;
  • l = 3 – f-орбиталь;
  • l = 4 – g-орбиталь.

s-орбиталь представляет собой симметричную относительно ядра сферу. Вероятность нахождения электрона на каждом участке орбитали одинакова. Всего на s-орбитали может располагаться два электрона.

s-орбиталь

p-орбиталь представляет собой форму гантели. Она направлена в трех разных направлениях – по координатным осям x, y и z и в совокупности они образуют энергетический подуровень.

p-орбитали, направленные по разным осям

d-, f- и g-орбитали имеют еще намного более сложные формы, чем p-орбиталь, поэтому их описание не представляется целесообразным.

Формы d-орбиталей, по-разному расположенных в пространстве

Каждое значение орбитального числа l является энергетическим подуровнем атома. Для каждого следующего энергетического уровня количество энергетических подуровней увеличивается и содержит в себе подуровни прошлых уровней. Звучит сложновато, да.

Говоря проще, чем больше значение n, тем больше ему соответствует значений l. Попробуем на примере. Значение главного числа n задает основной энергетический уровень. Например: n=1, тогда l=0. Это значит, что на первом энергетическом уровне есть только один подуровень с одной s-орбиталью. Теперь пусть n=2. Это второй энергетический уровень.

Для него l=0 и l=1. Это значит, что на нем два подуровня: на одном s-орбиталь, а на другом p-орбиталь. Для n=3 уже 3 подуровня и т. д. Такое заполнение электронами орбиталей является еще одной закономерностью, называемой правилом Клечковского.

Правило Клечковского гласит о том, что электроны заполняют атомные орбитали так, чтобы их суммарная энергия была минимальна, т. е. начиная с меньших энергетических уровней.

Пример сопоставления энергетическим уровням (n) энергетических подуровней (l) и орбиталей

Теперь давайте поговорим о заполнении непосредственно орбиталей. Представим себе s-орбиталь: сфера вокруг ядра, на которой есть 2 электрона: спиновое число одного – 1/2, другого – -1/2. Теперь представим себе p-орбиталь в форме гантели.

Три p-орбитали (направленные по координатным осям) образуют энергетический подуровень. Поскольку на каждой орбитали может быть по 2 электрона, то на таком подуровне может быть всего 6 электронов. Но как они его заполняют? Допустим, у нас есть 4 электрона.

Заполняют ли они сначала одну орбиталь, затем другую, а третью оставляют нетронутой? Здесь на помощь приходит третья закономерность – правило Гунда. Оно гласит, что электроны при заполнении подуровней занимают максимальное число свободных орбиталей.

Таким образом, сначала по один займет каждую орбиталь, а затем еще один займет полузаполненную орбиталь. Таким образом, две орбитали будут заполнены наполовину, а одна полностью.

Так устроен атом. Подведем итоги. В маленькой части атома, в центре, располагается атомное ядро, состоящее из протонов и нейтронов.

Вокруг располагаются энергетические уровни с подуровнями, на которых находятся орбитали разной формы – места, где скорее всего находятся электроны в данный момент времени.

Электроны заполняют орбитали в соответствии запретом Паули, правилом Клечковского и правилом Гунда.

Если Вам понравилась статья, подписывайтесь на канал и ставьте лайки!

Современная теория строения атома

Характеристика элементарных частиц входящих в состав атома

Сегодня даже дети дошкольного возраста знают, что все вокруг состоит из молекул и атомов. А вот что это такое и из чего они, в свою очередь, состоят — знает далеко не каждый взрослый. В этой статье просто и доступно, поделимся современными знаниями о мельчайших частицах.

Что такое атом — история открытия

Итак, все окружающие нас объекты и мы сами состоим из крошечных частиц, которые называются атомами. В их состав входят еще меньшие частицы: протоны, нейтроны и электроны. Современное строение атома наука открыла сравнительно недавно, до этого его долго считали неделимой частицей.

Мысль о том, что все вокруг состоит из мельчайших, невидимых глазу частиц возникла в Древней Греции и Древней Индии еще до нашей эры. Древнегреческий философ Демокрит был материалистом.

Именно он первым ввел в обиход понятие атома (с греческого — atomos — неделимый).

Демокрит считал, что невидимые частицы вечны, их бесчисленное множество, они постоянно двигаются, обладают весом, размером и формой.

Последующее развитие теория атомизма получила в Средние века и Новое время в работах французского физика Пьера Гассенди (1592—1655 гг.) и английского ученого Роберта Бойля (1627-1691 гг.).

Развитием атомистической теории и превращением ее в атомно-молекулярное учение занимались также Ломоносов, Лавуазье, Дальтон.

Долгое время атом считали элементарной, т.е. неделимой частицей. Но в 1897 году Джозеф Дж. Томсон открыл первую субатомную частицу — электрон. Это открытие имело огромное значение.

Ученый впервые предложил определенную структуру строения, считавшейся ранее неделимой частицы, которая получила название «пудинг с изюмом».

Согласно этой модели атом — это положительно заряженная сфера, внутри которой находятся отрицательно заряженные электроны. 

Но теорию Томсона опроверг Эрнест Резерфорд. В 1917 году британским физиком было совершено открытие протона — положительно заряженной элементарной частицы.

Открыв протон, Резерфорд предположил и наличие нейтронов — нейтрально заряженных частиц в атоме. Позже их существование экспериментально подтвердил Джеймс Чэдвик.

Основываясь на своем открытии, Резерфорд предложил свое описание атомной модели: положительно заряженное ядро и окружающие его электроны.

В 1913 году датчанин Нильс Бор предложил свой вариант строения атома, получивший название «планетарной модели». Согласно теории Бора, электроны находятся на определенном расстоянии от атомного ядра и вращаются по специальным орбитам (по аналогии с планетами, вращающимися вокруг Солнца). 

В начале XX века планетарную модель заменила волновая модель, принятая научным сообществом во всем мире.

Современные представления о строении атома были бы невозможны без открытия элементарных частиц и явления радиоактивности. Огромный вклад в науку, помимо вышеназванных ученых, внесли Эрвин Шредингер, Макс Планк, Вольфганг Паули.

На чем базируется, из скольки главных частиц состоит

Основу современных представлений теории атомизма составляют следующие положения:

  1. Атом состоит из ядра и окружающей его электронной оболочки.
  2. Электронная оболочка представляет собой движущиеся вокруг ядра электроны.
  3. Ядро всегда положительно заряжено — оно состоит из протонов, обозначающихся символом — p и нейтронов — n. Заряд ядра всегда равен сумме протонов в нем.
  4. Атом электронейтрален, так как число отрицательных частиц — электронов (е–) равняется числу положительных частиц — протонов (p+).
  5. Его электронейтральность может нарушаться, при условии, что он отдает или присоединяет электроны, при этом он становится положительно или отрицательно заряженным ионом соответственно.
  6. Электроны располагаются вокруг ядра в трехмерном пространстве. Они находятся в специальных областях, которые называют орбиталями. Каждая из этих областей характеризуется формой, размером и ориентацией внутри атома, каждой из орбиталей присваивается буквенно-цифровое обозначение.

Свойства, масса и размер

Большую часть атома составляет полупустое пространство, заполненное электронами. Ядро — это самая тяжелая (99,97% от массы атома) и одновременно самая маленькая его часть. В ядре как раз и сосредоточена практически вся масса атома. Ее измеряют в а.е.м.

— атомных единицах массы. Атомная единица массы равна массе 1/12 части атома углерода, свободно покоящегося и находящегося в основном состоянии. В химии используют «моль» для измерения атомной массы.

1 моль — это количество вещества, содержащее число атомов, которое равно числу Авогадро.

Массовое число — это сумма нейтронов и протонов в ядре атома.

Размеры атомов крайне малы. Самым маленьким по размеру считается атом Гелия, его радиус составляет 32 пикометра. Атом цезия является самым большим, его радиус равен 225 пикометров. Пико = (10{-12}). А радиус ядра в 10 000 раз меньше радиуса атома.

Периодическая система и строение атома, какая взаимосвязь

В таблице Менделеева указывается относительная атомная масса химических элементов.

Количество протонов в ядре соответствует порядковому номеру химического элемента в известной таблице Менделеева. Заряд ядра — это главная характеристика атома, которая влияет на распределение вещества в таблице Менделеева. 

Количество нейтронов  в таблице не указывается, их можно рассчитать, вычтя из массы атома порядковый номер химического вещества (число его протонов).

Почему ядро не распадается

Науке известно 4 основных вида взаимодействия между телами и частицами:

  • слабое;
  • сильное;
  • электромагнитное;
  • гравитационное.

Внутри атома, в его ядре, между протонами и нейтронами существует сильное взаимодействие, которое не позволяет ядру с легкостью распадаться. В середине XX века человечество обнаружило, что при расщеплении ядер происходит высвобождение огромной энергии, что послужило толчком для развития атомной промышленности и ядерного оружия.

Атомистическая теория — не самая сложная тема, которая есть в физике и химии. Если столкнулись с заданиями посложнее и не понимаете, с чего начать, ищите помощи у специалистов Феникс.Хелп!

Элементарные частицы

Характеристика элементарных частиц входящих в состав атома

В физике элементарными частицами называли физические объекты в масштабах ядра атома, которые невозможно разделить на составные части. Однако, на сегодня, ученым все же удалось расщепить некоторые из них. Структуру и свойства этих мельчайших объектов изучает физика элементарных частиц.

История открытия первых частиц

О наименьших частицах, составляющих всю материю, было известно еще в древности. Однако, основоположниками так званого «атомизма» принято считать философа Древней Греции Левкиппа и его более известного ученика — Демокрита. Предполагается, что второй и ввел термин «атом». С древнегреческого «atomos» переводится как «неделимый», что определяет взгляды древних философов.

Позднее стало известно, что атом все же можно разделить на два физических объекта – ядро и электрон. Последний впоследствии и стал первой элементарной частицей, когда в 1897-м году англичанин Джозеф Томсон провел эксперимент с катодными лучами и выявил, что они представляют собой поток одинаковых частиц с одинаковыми массой и зарядом.

Параллельно с  работами Томсона, занимающийся исследованием рентгеновского излучения Анри Беккерель проводит опыты с ураном и открывает новый вид излучения.

В 1898 году французская пара физиков – Мария и Пьер Кюри изучают различные радиоактивные вещества, обнаруживая то же самое радиоактивное излучение.

Позже будет установлено, что оно состоит из альфа (2 протона и 2 нейтрона) и бета-частиц (электроны), а Беккерель и Кюри получат Нобелевскую премию.

Проводя свои исследования с такими элементами как уран, радий и полоний, Мария Склодовская-Кюри не предпринимала никаких мер безопасности, в том числе не использовала даже перчатки. Как следствие в 1934 году ее настигла лейкемия. В память о достижениях великого ученого, открытый парой Кюри элемент, полоний, был назван в честь родины Марии – Polonia, с латинского – Польша.

Фотография с V Сольвеевского конгресса 1927 год. Попробуйте найди всех ученых из этой статьи на данном фото.

Начиная с 1905-го года, Альберт Эйнштейн посвящает свои публикации несовершенству волновой теории света, постулаты которой расходились с результатами экспериментов. Что впоследствии привело выдающегося физика к идее о «световом кванте» — порции света. Позже, в 1926-м году, он был назван как «фотон», в переводе с греческого «phos» («свет»), американским физиохимиком — Гилбертом Н. Льюисом.

В 1913 году Эрнест Резерфорд, британский физик, основываясь на результатах уже проведенных на то время экспериментов, отметил, что массы ядер многих химических элементов кратны массе ядра водорода.

Поэтому он предположил, что ядро водорода является составляющей ядер других элементов. В своем эксперименте Резерфорд облучал альфа-частицами атом азота, который в результате излучил некую частицу, названную Эрнестом как «протон», с др. греческого «протос» (первый, основной).

Позже было экспериментально подтверждено, что протон – это ядро водорода.

Очевидно, протон, не единственная составная часть ядер химических элементов. К такой мысли приводит тот факт, что два протона в ядре отталкивались бы, и атом мгновенно распадался.

Поэтому Резерфорд выдвинул гипотезу о наличии еще одной частицы, которая имеет массу, равную массе протона, но является незаряженной. Некоторые опыты ученых по взаимодействию радиоактивных и более легких элементов, привели их к открытию еще одного нового излучения.

В 1932-м году Джеймс Чедвик определил, что оно состоит из тех самых нейтральных частиц, которые назвал нейтронами.

Таким образом, были открыты наиболее известные частицы: фотон, электрон, протон и нейтрон.

Далее открытия новых субъядерных объектов становились все более частым событием, и на данный момент известно около 350 частиц, которые принято полагать «элементарными». Те из них, которые до сих пор не удалось расщепить, считаются бесструктурными и называются «фундаментальными».

Что такое спин?

Прежде чем переходить к дальнейшим инновациям в области физики, следует определиться с характеристиками всех частиц. К наиболее известным, не считая массы и электрического заряда, относится также и спин.

Данная величина называется иначе как «собственный момент импульса» и никоим образом не связана с перемещением субъядерного объекта как целого. Ученым удалось обнаружить частицы со спином 0, ½, 1, 3/2 и 2.

Чтобы представить наглядно, хоть и упрощенно, спин, как свойство объекта, рассмотрим следующий пример.

Пусть у предмета имеется спин равный 1. Тогда такой объект при повороте на 360 градусов возвратится в исходное положение. На плоскости этим предметом может быть карандаш, который после разворота на 360 градусов окажется в исходном положении. В случае с нулевым спином, при любом вращении объекта он будет выглядеть всегда одинаково, к примеру, одноцветный мячик.

Для спина ½ потребуется предмет, сохраняющий свой вид при развороте на 180 градусов. Им может быть все тот же карандаш, только симметрично наточенный с обеих сторон. Спин равный 2 потребует сохранения формы при повороте на 720 градусов, а 3/2 – 540.

Данная характеристика имеет очень большое значение для физики элементарных частиц.

Стандартная модель частиц и взаимодействий

Стандартная модель в физике

Имея внушительный набор микрообъектов, составляющих окружающий мир, ученые решили их структурировать, так образовалась известная всем теоретическая конструкция под названием «Стандартная модель». Она описывает три взаимодействия и 61 частицу при помощи 17-ти фундаментальных, некоторые из которых были ею предсказаны задолго до открытия.

Три взаимодействия таковы:

  • Электромагнитное. Оно происходит между электрически заряженными частицами. В простом случае, известном со школы, — разноименно заряженные объекты притягиваются, а одноименно – отталкиваются. Происходит это посредством, так называемого переносчика электромагнитного взаимодействия – фотона.
  • Сильное, иначе – ядерное взаимодействие. Как ясно из названия, его действие распространяется на объекты порядка ядра атома, оно отвечает за притяжение протонов, нейтронов и прочих частиц, также состоящих из кварков. Сильное взаимодействие переносится при помощи глюонов.
  • Слабое. Действует на расстояниях в тысячу меньших размера ядра. В таком взаимодействии принимают участия лептоны и кварки, а также их античастицы. При этом в случае слабого взаимодействия они могут перевоплощаться друг в друга. Переносчиками являются бозоны W+, W− и Z0.

Краткий обзор различных семейств элементарных и составных частиц

https://www.youtube.com/watch?v=sr2Yevk49m4u0026t=152s

Так Стандартная модель сформировалась следующим образом. Она включает шесть кварков, из которых состоят все адроны (частицы, подверженные сильному взаимодействию):

  • Верхний (u);
  • Очарованный (c);
  • Истинный (t);
  • Нижний (d);
  • Странный (s);
  • Прелестный (b).

Видно, что эпитетов физикам не занимать. Другие 6 частиц – лептоны. Это фундаментальные частицы со спином  ½, которые не принимают участие в сильном взаимодействии.

  • Электрон;
  • Электронное нейтрино;
  • Мюон;
  • Мюонное нейтрино;
  • Тау-лептон;
  • Тау-нейтрино.

А третьей группой Стандартной модели являются калибровочные бозоны, которые имеют спин равный 1 и представляются переносчиками взаимодействий:

  • Глюон – сильное;
  • Фотон – электромагнитное;
  • Z-бозон — слабое;
  • W-бозон – слабое.

К ним также относится и недавно обнаруженный бозон Хиггса, частица со спином 0, которая, упрощенно говоря, наделяет все другие субъядерные объекты инертной массой.

В результате, согласно Стандартной модели, наш мир выглядит таким образом: все вещество состоит из 6 кварков, образующих адроны, и 6 лептонов; все эти частицы могут участвовать в трех взаимодействиях, переносчиками которых являются калибровочные бозоны.

Недостатки Стандартной модели

Однако, еще до открытия бозона Хиггса – последней частицы, предсказываемой Стандартной моделью, ученые вышли за ее пределы. Ярким примером тому есть т.н. «гравитационное взаимодействие», которое сегодня находится наравне с другими. Предположительно, переносчиком его есть частица со спином 2, которая не имеет массы, и которую физикам еще не удалось обнаружить — «гравитон».

Мало того, Стандартная модель описывает 61 частицу, а на сегодняшний день человечеству известно уже более 350 частиц. Это означает, что на достигнутом работа физиков-теоретиков не окончена.

Классификация частиц

Чтобы упростить себе жизнь, физики сгруппировали все частицы в зависимости от особенностей их строения и прочих характеристик. Классификация бывает по следующим признакам:

  • Время жизни.
    1. Стабильные. В их числе протон и антипротон, электрон и позитрон, фотон, а также гравитон. Существование стабильных частиц не ограничено временем, до тех пор, пока они находятся в свободном состоянии, т.е. не взаимодействуют с чем-либо.
    2. Нестабильные. Все остальные частицы спустя некоторое время распадаются на свои составные части, потому называются нестабильными. Например, мюон живет всего лишь 2,2 микросекунды, а протон — 2,9•10*29 лет, после чего может распасться на позитрон и нейтральный пион.
  • Масса.
    1. Безмассовые элементарные частицы, которых всего три: фотон, глюон и гравитон.
    2. Массивные частицы – все остальные.
  • Значение спина.
    1. Целый спин, в т.ч. нулевой, имеют частицы, которые называются бозоны.
    2. Частицы с полуцелым спином — фермионы.
  • Участие во взаимодействиях.
    1. Адроны (структурные частицы) – субъядерные объекты, что принимают участие во всех четырех типах взаимодействий. Ранее упоминалось, что они складываются с кварков. Адроны делятся на два подтипа: мезоны (целый спин, являются бозонами) и барионы (полуцелый спин — фермионы).
    2. Фундаментальные (бесструктурные частицы). К ним относятся лептоны, кварки и калибровочные бозоны (читайте ранее – «Стандартная модель..»).

Ознакомившись с классификацией всех частиц, можно, к примеру, точно определить некоторые из них. Так нейтрон является фермионом, адроном, а точнее барионом, и нуклоном, то есть имеет полуцелый спин, состоит из кварков и участвует в 4-х взаимодействиях. Нуклон же – это общее название для протонов и нейтронов.

Интересные факты

  • Интересно, что противники атомизма Демокрита, который предсказывал существование атомов, заявляли, что любое вещество в мире делится до бесконечности. В какой-то мере они могут оказаться правыми, так как ученым уже удалось разделить атом на ядро и электрон, ядро на протон и нейтрон, а их в свою очередь на кварки.
  • Демокрит предполагал, что атомы имеют четкую геометрическую форму, и потому «острые» атомы огня – обжигают, шершавые атомы твердых тел крепко скрепляются своими выступами, а гладкие атомы воды проскальзывают при взаимодействии, иначе – текут.
  • Джозеф Томсон составил собственную модель атома, который представлялся ему как положительно заряженное тело, в которое как бы «воткнуты» электроны. Его модель получила название «пудинг с изюмом» (Plum pudding model).
  • Кварки получили свое название благодаря американскому физику Мюррею Гелл-Манну. Ученый хотел использовать слово, похожее на звук кряканья утки (kwork). Но в романе Джеймса Джойса «Поминки по Финнегану» встретил слово «quark», в строке «Три кварка для мистера Марка!», смысл которого точно не определен и возможно, что Джойс использовал его просто для рифмы. Мюррей решил назвать частицы этим словом, так как на то время было известно лишь три кварка.
  • Хотя фотоны, частицы света, являются безмассовыми, вблизи черной дыры, кажется, что они меняют свою траекторию, притягиваясь к ней при помощи гравитационного взаимодействия. На самом же деле сверхмассивное тело искривляет пространство-время, из-за чего любые частицы, в том числе и не имеющие массы, меняют свою траекторию в сторону черной дыры (см. интересные эффекты гравитации).
  • Большой адронный коллайдер именно потому «адронный», что сталкивает два направленных пучка адронов, частиц размерами порядка ядра атома, которые участвуют во всех взаимодействиях.

Строение атома – электронная конфигурация, структура и модели

Характеристика элементарных частиц входящих в состав атома

Со временем учёные выяснили, что они крупно заблуждались: структура атома оказалась вовсе не монолитной. С постепенным увеличением точности приборов стало ясно, что она включает в себя 3 типа микрочастиц: положительно, отрицательно и нейтрально заряженные. Называются они следующим образом:

  1. Протон, «основной».
  2. Нейтрон, «ни тот ни другой».
  3. Электрон, «янтарь».

Частицы, несущие положительный заряд, назвали протонами, нейтральный — нейтронами, отрицательный — электронами.

Основа любого атома — это его ядро. Оно состоит из положительных и нейтральных микрочастиц, то есть из протонов и нейтронов. Их количество может быть одинаковым, а может и разниться.

В результате получается, что ядро — это всегда положительно заряженная часть атома. Однако сам он заряжен нейтрально, и причина тому — электроны, летающие вокруг ядра по орбитальным спиралям.

Такова общая схема строения атома.

Свойства вещества, которое может образовывать атом, напрямую зависят от количества микрочастиц в его составе. Каждая из них абсолютно идентична другой аналогичной микрочастице, поэтому они полностью взаимозаменяемы.

Все электроны являются химическими «клонами» друг друга, то же самое правило касается протонов и нейронов.

Именно поэтому ко всему веществу, имеющемуся в природе, можно применять общие законы химии, на основании которых оно будет работать.

Любые атомы состоят всего лишь из трёх простых микрочастиц, представленных в разных количествах.

А более сложные структуры, молекулы, являются сочетаниями различных атомов, взятых в определённых пропорциях, то есть все без исключения объекты в природе — как живые, так и неживые, как очень сложные по своей структуре, так и простейшие — построены всего из трёх типов мелких «кирпичиков». Если в этот факт как следует вдуматься, он действительно способен поразить воображение.

Ядро: протоны и нейтроны

Общее название для составных частиц ядра, коими являются протоны и нейроны — нуклоны. Вместе они и составляют почти всю массу атома, а значит, и почти всю материю во Вселенной.

Теория гласит, что каждый протон или нейтрон включает в себя ровно 3 составные частицы, именуемые кварками, между которыми имеется связующее глюонов облако. Кварки, согласно модели, являются такими же неделимыми частицами, как электроны.

Глюоны же обеспечивают их взаимную связь друг с другом.

В то же время сами атомные ядра чрезвычайно малы. Размеры каждого ядра в десятки тысяч раз меньше размеров всего атома.

Но несмотря на это, почти вся атомная масса заключается в его положительно заряженном ядре, тогда как электрон представляет собой чисто энергетическую, нематериальную частицу.

Получается, что материального вокруг нас вовсе не так много, как кажется на первый взгляд. Куда больше места занимают энергетические потоки, связывающие физическое вещество.

Число протонов, содержащихся в том или ином атоме, указывает на его порядковый номер в Периодической системе химических элементов. Например, у кислорода порядковый номер 8, а значит, и число протонов у него точно такое же.

Формула, по которой вычисляется количество нейтронов: округлённая атомная масса минус число протонов. Атомная масса элемента указана под его порядковым номером в графической таблице Менделеева.

Например, для атома хлора (Cl) это будет 35 — 17 = 18, для брома (Br) 80 — 35 = 45, а для серы (S) 32 — 16 = 16. С числом нейтронов связано понятие изотопа.

Процесс ионизации

Количество электронов в «чистом» атоме должно уравновешивать число протонов. Если же оно несколько больше или меньше, чем нужно, атом перестаёт быть нейтральным и обретает положительный или отрицательный заряд. Если электроны отсоединяются, общий заряд увеличивается, а в случае их присоединения — наоборот, уменьшается. Преобразованный таким образом атом называется ионом.

Возьмём для примера медь (Cu), относящуюся к классу простых веществ. В обычном состоянии у неё имеется 29 электронов. Но если она отдаст 2 электрона, у неё их останется всего 27. А сам атом меди превратится в положительный ион меди или, иначе, в катион меди. В их роли часто выступают всевозможные металлы (магний, алюминий, литий, натрий, хром), которые могут легко терять до трёх электронов.

Отрицательно заряженные ионы, в свою очередь, называются анионами. Как правило, они являются неметаллами, так как обладают высокой электроотрицательностью — способностью притягивать к себе электроны. Например, им может стать атом кремния, присоединив к себе хотя бы один электрон.

Что такое электрон

Электроны, двигающиеся вокруг ядра по сферической траектории, образуют так называемое электронное облако. А оно уже создаёт вокруг каждого атома его личное электромагнитное поле, оказывающее влияние на другие атомы.

Немного истории

В 1891 году в результате проведённых экспериментов ирландский физик Стони сумел вывести, что электричество переносится мельчайшими частицами, которые имеются в составе любого атома. Тогда же он и предложил назвать их электронами.

Спустя несколько лет, физики Перрен и Томсон нашли доказательства, что электрон имеет сугубо отрицательный заряд. Кроме того, они смогли рассчитать массу и скорость электрона.

Природа частицы

Отрицательная частица электрон имеет крайне маленькие размеры. Отдельные электроны не поможет разглядеть даже самый мощный микроскоп. Визуально их можно наблюдать только в виде размытого электронного облака вокруг ядра.

Электрон — это устойчивая частица энергии, которая постоянно находится в движении. Вне движения он просто не существует. И не похоже, чтобы у этой энергетической единицы была какая-то структура.

Но масса у него всё-таки есть, хотя, как и его габариты, она очень маленькая.

В теории электрон включает в себя 3 нематериальные квазичастицы, несущие о нём различную информацию. Всего их 3:

  1. Холон, отвечающий за заряд.
  2. Спинон, заведующий его вращением.
  3. Орбитон, говорящий о его положении на орбите.

Но это всего лишь условности, и они никак не указывают, что электрон и правда можно поделить на отдельные частицы. На текущем уровне развития науки эта частица пока считается неделимой. И нет оснований полагать, что в будущем это может измениться.

Электроны обладают способностью поглощать энергию. В случаях, когда это происходит, атом, который в себе их содержит, переходит с одного энергетического уровня на другой. Если поглощенной энергии слишком много, электрон может выйти из атомной структуры и стать независимой частицей. При этом он будет проявлять волновые свойства.

Электронная конфигурация

Электронная конфигурация атома — схематическое отображение отрицательных частиц, расположенных на атомных орбиталях. Умея делать такую запись, можно очень быстро определять количество орбиталей у того или иного атома. Перед тем как приступать к определению самой конфигурации, необходимо найти порядковый номер и заряд нужного элемента.

Любой атом состоит из нескольких электронных оболочек. Их максимальное количество достигает семи. Каждая из них имеет подуровни, заполняемые электронами последовательно, в строго установленном порядке.

Число подуровней, содержащееся в той или иной оболочке, равняется её номеру.

Внешние слои с большим количеством подуровней, находящиеся дальше от ядра, имеют большую энергию по сравнению с внутренними, чьё расположение близко к ядру.

Всего есть 6 типов подуровней, каждый из которых может содержать определённое число орбиталей. Электроны на каждом из них, когда они заполнены полностью, располагаются в чётном количестве. Эти подуровни обозначаются следующими буквами:

  1. s. Имеет всего одну орбиталь. Может содержать только 2 электрона.
  2. p. 3 орбитали, максимальные 6 электронов.
  3. d. 5 орбиталей, 10 частиц.
  4. f. 7 орбиталей, 14 частиц.
  5. g. 9 орбиталей, 18 частиц.
  6. h. 11 и 22 частицы.
  7. i. 13 и 26 частиц.

Орбитали заполняются в следующем порядке:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

Цифра справа обозначает номер оболочки, буква слева — подуровень этой оболочки.

Наглядная запись

Теперь возьмём для примера какой-нибудь химический элемент. Например, калий. В таблице Менделеева он имеет запись K и его можно найти под номером 19. Значит, у него имеется 19 электронов, которые нужно расфасовать по орбиталям в указанном порядке. Делаем это.

Сначала идёт уровень 1s. Подуровень s может содержать только 2 электрона. Число электронов записывается в виде маленького индекса над буквой. В данном случае это будет 1s2.

Следом по порядку идёт 2s. Тоже s и тоже только 2 электрона. 2s2 .

Дальше 2p. Смотрим, сколько электронов может содержать уровень p. 2p6.

Теперь снова возвращаемся на подуровень s, который опять-таки включает в себя всего лишь 2 электрона. 3s2 .

12 уже упорядочено. Осталось 7. И следующий уровень — 3p6.

Остался всего один электрон, который нужно разместить на следующем s-подуровне. В результате на нём остаётся одно свободное место — всего частиц может быть 2, но мы располагаем только одну оставшуюся. А записывается это как 4s1.

В одну строчку это всё записывается следующим образом: 1s2 2s2 2p6 3s2 3p6 4s1.

Важно учитывать, что это электронная конфигурация для основного состояния атома. В Периодической системе элементов у атомов тоже указаны исключительно те их свойства, которыми они обладают в своём основном состоянии.

Но также они могут пребывать и в возбуждённом состоянии. Это происходит при сообщении им дополнительной энергии. Тогда электроны с положенных им орбиталей будут перескакивать на другие и запись будет несколько иной.

Различные атомные модели

Ещё философы Древней Греции — колыбели науки, пытались постичь природу этой необыкновенной частицы. Особенно среди прочих выделился Демокрит. И пусть с вершины нынешней науки его идеи кажутся немного наивными и примитивными, на тот момент это всё же был большой прорыв.

По мнению философа, из атомов состоит даже такая неосязаемая субстанция, как человеческая душа. Ещё он считал, что каждый отдельный атом имеет примерно те же физические свойства, что и вещество, которое он образует. Например, огонь, как он думал, должен иметь острые атомы, а вода — наоборот, гладкие.

Английский физик Дж. Томсон тоже внёс значительный вклад в развитие представлений об атомном устройстве. Но несмотря на это, и его идеи были несколько ошибочными. В 1904 году он выдвинул модель, рассматривающую атом в качестве физического тела, имеющего положительный заряд, внутри которого располагались отрицательно заряженные частицы.

В том же году, что и Томсон, Х. Нагаока предложил планетарную модель атома, которая была уже ближе к истине, но все равно не дотягивала до неё. В его модели строения атома электроны подобны кольцам Сатурна, и по тому же принципу крутятся вокруг ядра с положительным зарядом.

Последняя предложенная модель была разработана совместно Бором и Резерфордом. Она же и является устоявшейся в современном учёном мире. Практически все последующие научные наработки берут за основу именно их теорию строения атома, лишь с некоторыми незначительными изменениями. Её так и назвали — модель Резерфорда-Бора.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.