Как рассчитать солнечный коллектор

Содержание

Солнечное отопление частного дома своими руками: расчёт мощности, устройство

Как рассчитать солнечный коллектор

Соорудить солнечное отопление частного дома своими руками – не такая и сложная задача, как кажется неосведомленному обывателю. Для этого понадобятся навыки сварщика и материалы, доступные в любом строительном магазине.

Актуальность создания солнечного отопления частного дома своими руками

Получить полную автономию – мечта каждого владельца, затевающего частное строительство. Но действительно ли солнечная энергия способна отапливать жилой дом, особенно если устройство для ее накопления собрано в гараже?

Расчет мощности солнечного коллектора

В зависимости от региона солнечный поток может давать от 50 Вт/кв.м в пасмурный день до 1400 Вт/кв.м при ясном летнем небе. При таких показателях даже примитивный коллектор с низким КПД (45-50%) и площадью 15 кв.м. может выдавать в год около 7000-10000 кВт*ч. А это сэкономленные 3 тонны дров для твердотопливного котла!

Как рассчитать необходимую площадь солнечного коллектора для бытовых нужд:

  • в среднем на квадратный метр устройства приходится 900 Вт;
  • чтобы повысить температуру воды, необходимо затратить 1,16 Вт;
  • учитывая также теплопотери коллектора, 1 кв.м сможет нагреть около 10 литров воды в час до температуры 70 градусов;
  • для обеспечения 50 л горячей воды, необходимой одному человеку, понадобится затратить 3,48 кВт;
  • сверившись с данными гидрометцентра о мощности солнечного излучения (Вт/кв.м) в регионе, необходимо 3480 Вт разделить на получившуюся мощность солнечного излучения – это и будет нужная площадь солнечного коллектора для нагрева 50 л воды.

Как становится понятно, эффективное автономное отопление исключительно с использованием солнечной энергии осуществить довольно проблематично. Ведь в хмурую зимнюю пору солнечного излучения крайне мало, а разместить на участке коллектор площадью 120 кв.м. не всегда получится.

Применение солнечных коллекторов

Так неужели солнечные коллекторы нефункциональны? Не стоит заранее сбрасывать их со счетов. Так, с помощью подобного накопителя можно летом обходиться без бойлера – мощности будет достаточно для обеспечения семьи горячей водой.

Зимой же удастся сократить затраты на энергоносители, если подавать уже нагретую воду из солнечного коллектора в электрический бойлер.

Кроме того, солнечный коллектор станет отличным помощником тепловому насосу в доме с низкотемпературным отоплением (теплыми полами).

Так, зимой нагретый теплоноситель будет использоваться в теплых полах, а летом излишки тепла можно отправить в геотермальный контур. Это позволит снизить мощность теплового насоса.

Ведь геотермальное тепло не возобновляется, так что со временем в толще грунта образовывается все увеличивающийся «холодный мешок». Например, в обычном геотермальном контуре на начало отопительного сезона температура составляет +5 градусов, а в конце -2С.

При подогреве же начальная температура поднимается до +15 С, а к концу отопительного сезона не падает ниже +2С.

Устройство самодельного солнечного коллектора

Для уверенного в своих силах мастера собрать тепловой коллектор не составит труда. Можно начать с небольшого устройства для обеспечения горячей воды на даче, а в случае успешного эксперимента перейти к созданию полноценной солнечной станции.

Плоский солнечный коллектор из металлических труб

Самый простой в исполнении коллектор – плоский. Для его устройства понадобится:

  • сварочный аппарат;
  • трубы из нержавеющей стали или меди;
  • стальной лист;
  • закаленное стекло или поликарбонат;
  • деревянные доски для рамы;
  • негорючий утеплитель, способный выдержать нагретый до 200 градусов металл;
  • черная матовая краска, устойчивая к высоким температурам.

Сборка солнечного коллектора довольно проста:

  1. Трубы свариваются в решетку – две горизонтальные большего диаметра, по которым будет подаваться теплоноситель, а между ними вертикальные меньшего диаметра – по которым теплоноситель будет циркулировать в процессе нагревания.
  2. Собирается рама из досок по размеру сваренной решетки.
  3. Трубы привариваются к стальному листу – он выступает в роли адсорбера солнечной энергии, поэтому прилегание труб должно быть максимально плотным. Все красится в матовый черный цвет.
  4. На лист с трубами кладется рама так, чтобы трубы оказались с внутренней стороны. Просверливаются отверстия для входа и выхода труб. Укладывается утеплитель. Если используется гигроскопичный материал, нужно позаботиться о гидроизоляции – ведь намокших утеплитель больше не будет защищать трубы от охлаждения.
  5. Утеплитель фиксируется листом ОСБ, все стыки заполняются герметиком.
  6. Со стороны адсорбера кладется прозрачное стекло или поликарбонат с небольшим воздушным зазором. Оно служит для предотвращения остывание стального листа.
  7. Фиксировать стекло можно с помощью деревянных оконных штапиков, предварительно проложив герметик. Он предотвратит попадание холодного воздуха и защитит стекло от сжатия рамы при нагревании и охлаждении.

Для полноценного функционирования коллектора понадобится накопительный бак. Его можно сделать из пластиковой бочки, утепленной снаружи, в которой спиралью уложен теплообменник, соединенный с солнечным коллектором. Вход нагретой воды должен располагаться сверху, а выход холодной – снизу.

Важно правильно разместить бак и коллектор. Чтобы обеспечить естественную циркуляцию воды, бак должен находиться выше коллектора, а трубы – иметь постоянный наклон.

Если же солнечный коллектор расположен на крыше дома, придется включить в систему насос, который обеспечит движение воды.

Солнечный нагреватель из подручных материалов

Если со сварочным аппаратом дружбу свести так и не удалось, можно сделать простой солнечный нагреватель из того, что под рукой. Например, из жестяных банок. Для этого в дне делаются отверстия, сами банки скрепляются друг с другом герметиком, на него же садятся в местах соединения с ПВХ-трубами. Красятся в черный цвет и укладываются в раму под стекло также, как и обычные трубы.

А вот работать с пластиковыми бутылками еще проще – достаточно нанизать их на покрашенные в черный цвет ПВХ-трубы.

Для улучшения нагревания в каждую бутылку вкладывается черная подложка, сами же бутылки создают парниковый эффект, так что не требуют накрывания стеклом.

Фасад дома из солнечных батарей

Почему бы вместо обычного сайдинга не отделать дом чем-то полезным? Например, сделав с южной стороны на всю стену солнечный нагреватель.

Такое решение позволит оптимизировать расходы на отопление сразу по двум направлениям – снизить затраты на энергоноситель и существенно сократить теплопотери за счет дополнительного утепления фасада.

Устройство просто до безобразия и не требует специальных инструментов:

  • на утеплитель уложен окрашенный оцинкованный лист;
  • поверх уложена нержавеющая гофрированная труба, также выкрашенная в черный;
  • все прикрыто листами поликарбоната и зафиксировано алюминиевыми уголками.

Если же и этот способ кажется сложным, на видео представлен вариант из жести, полипропиленовых труб и пленки. Куда уж проще!

/wp-content/uploads/2018/02/11.mp4

On-line калькулятор расчета работы солнечной электростанции

Как рассчитать солнечный коллектор

Выберите месторасположение объекта, воспользовавшись поиском по названию города или передвигая метку на карте. Введите параметры солнечных панелей, ветрогенераторов, воздушных и/или тепловых коллекторов.

Для расчета солнечных панелей и ветрогенераторов укажите среднесуточное потребление (кВт·ч/сутки) или воспользуйтесь «калькулятором» средней нагрузки, расположенным под картой, справа. Рассчитайте время автономной работы системы, задав данные ёмкости и напряжения аккумуляторных батарей.

Для расчёта тепловой энергии или объема горячей воды выберите тип и количество солнечных коллекторов.

Вы можете воспользоваться подсказками, расположенными под калькулятором или обратиться за помощью в расчётах к нашим специалистам по телефону +7(812)903-28-88, info@helios-house.ru.

Как подобрать комплектацию солнечной и/или ветровой электростанции?

1. Мы рекомендуем начать с расчёта необходимого количества энергии или суточного потребления вашего дома/объекта в кВт*ч/сутки.

Эти данные можно получить, списав с электросчетчика или рассчитать в калькуляторе средней нагрузки, справа под картой. Обратите внимание, что данные средней нагрузки в летний и зимний период могут отличаться.

Рекомендуем заполнить оба показателя. На графике появятся две прямые: синяя линия указывает зимнее потребление, красная – летнее.

2. Выберите регион установки, для этого используйте «поиск города по названию» или двигайте метку на карте. Инсоляция в разных регионах может значительно отличаться.

3. Выберите тип и количество солнечных панелей в соответствии с суточным потреблением вашего объекта. На графике появится кривая жёлтого цвета, она показывает выработку выбранного вами солнечного массива, при условии ориентации его строго на юг и соблюдении рекомендуемого угла наклона (зенитный угол).

4. Чтобы увидеть количество энергии, вырабатываемое панелями в разные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

5. Подберите необходимую ёмкость аккумуляторных батарей, для этого справа под картой выбирайте желаемую ёмкость аккумуляторов и их напряжение. Время автономной работы системы (часов) с выбранным массивом аккумуляторов и при указанной суточной нагрузке высветится ниже.

6. Обратите внимание, что в большинстве случаев перекрыть зимнее (ноябрь-февраль) потребление сложно. Поэтому для зимней эксплуатации используют резервные источники энергии, при полном отсутствии сети это может быть ветрогенератор или топливный генератор.

7. Чтобы добавить к вашей резервной системе ветрогенератор откройте вкладку «Расчет энергии, вырабатываемой ветрогенераторами». Выберите количество и модель ветрогенератра, высоту мачты и окружающий ландшафт. На графике появится голубая кривая, отображающая выработку ветрогенератора в кВт*ч.

Чтобы увидеть количество энергии, вырабатываемое в определенные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

Обратите внимание, что в нижнем графике «Суммарная выработка электроэнергии» отображаются общие данные как солнечной, так и ветровой системы в сумме.

Как подобрать тип и количество водяных солнечных коллекторов?

Объем горячей воды, получаемой от того или иного водного солнечного коллектора можно рассчитать, открыв вкладку «Расчет энергии, вырабатываемой водяными солнечными коллекторами».

Выберите модель и количество коллекторов и укажите угол наклона коллектора в графе «зенитный угол». На графике появится жёлтая кривая, указывающая количество воды в литрах нагреваемой в сутки в различные месяцы года. Температура нагрева 25°С.

Как рассчитать количество тепловой энергии и выбрать воздушный солнечный коллектор?

Для расчета объема нагреваемого солнечным коллектором воздуха откройте вкладку «Расчёт энергии, вырабатываемой воздушными солнечными коллекторами» выберите модель и количество коллекторов. Обязательно укажите угол наклона коллектора в графе «зенитный угол». Для моделей с креплением на стену установите значение 90.

На графике появится желтая кривая, отображающая объем горячего воздуха в м³/сутки при нагреве на 44°С.

Обратите внимание, что полученные при расчетах данные приблизительные. On-line калькулятор в своих расчётах опирается на базы данных о инсоляции на земной поверхности в разных точках земного шара.

Период наблюдения, учтённый в базе данных инсоляции земной поверхности – чуть более двадцати лет. Фактическая выработка энергии может отличаться из года в год, и зависит от инсоляции в конкретном периоде.

К тому же данные калькулятора предполагают расположение источников тепловой и электрической энергии (солнечных панелей и коллекторов) строго на юг!

Расчет солнечного коллектора: снижаем возможные риски

Как рассчитать солнечный коллектор

Установка вакуумного солнечного коллектора – выгодная инвестиция в будущее своей семьи. Круглогодичный доступ к горячей воде, бесплатная энергия для отопления дома, независимость от работы коммунальных служб и отсутствие перебоев в горячем водоснабжении – преимущества, которые особенно ощутимы в холодное время года.

Факторы влияния на работу вакуумного коллектора

Для того чтобы вакуумные коллектора эффективно функционировали и приносили пользу по назначению, необходимо точно рассчитать и подобрать всю комплектацию оборудования для решения той или иной задачи.

Недостаточная производительность коллекторов приведет к нехватке тепловой энергии для отопления дома, бани, теплицы и других сооружений, подогрева воды для ежедневного использования или для наполнения бассейна.

Установка коллекторов избыточной мощности не только не рациональна с точки зрения лишних финансовых затрат , но и может вызвать дополнительную нагрузку на систему в летний период, когда потребности в энергии снижаются, а активность солнца возрастает.

Необходим некий оптимальный вариант и, поэтому, расчет и подбор комплекта оборудования на основе солнечных коллекторов следует доверить специалистам, так как на дальнейшую эффективность работы такой системы влияет немало факторов.

При подборе гелиоустановки важно учитывать следующие данные:

1) Уровень инсоляции (солнечного излучения) в той географической точке и те месяцы, в которые рассчитывается эксплуатация оборудования; 2) КПД коллектора (зависит от типа установки; для вакуумных солнечных коллекторов коэффициент, в среднем, колеблется в пределах 67-80%.

Для большей достоверности рекомендуется ориентироваться на минимальный результат); 3) Угол наклона коллектора (от данного показателя зависит количество солнечной энергии, которую поверхность коллектора будет поглощать в течение светового дня.

Необходимый угол наклона, под которым будет установлен коллектор, индивидуален и зависит от региона, географических и климатических особенностей местности); 4) Эффективная площадь поглощения коллектора.

Кроме того, важно учитывать и площадь отапливаемого помещения, хорошо ли оно утеплено или нет, потребляемый объем горячей воды, тип отопительной системы (радиаторы или теплые полы), тип самого коллектора, характер теплоносителя в системе и дополнительные условия, которые влияют на эффективную работу вакуумной гелиоустановки.

Характеристики вакуумных трубок – исходная точка расчета ее мощности

При расчете эффективности применения солнечных коллекторов для целей отопления и ГВС необходимо учитывать характеристики вакуумных трубок. Стандартная вакуумная трубка имеет 1800 мм в длину, внешний диаметр – 58 мм, внутренний – 47 мм. Конструкция двух стеночная.

  Цилиндры имеют различную толщину: внешний более прочный – 1,8±0,15мм, внутренний – 1,6±0,15мм. Пространство между стенками заполнено вакуумом (менее 5х10-3 Па) и создает преграду для потерь тепла (принцип работы колбы термоса). В качестве материала для изготовления применяют боросиликатное стекло.

Селективное покрытие на наружной поверхности внутреннего цилиндра – напыление композита из нержавеющей стали, алюминия и меди – способствует улучшенному поглощению солнечного излучения.

Цилиндрическая форма стеклянной трубки при соблюдении основных требований установки обеспечивает более 91% поглощения всей поступившей на поверхность энергии.

Теплопотери при этом не превышают 8% (при температуре носителя около 80°C). Коэффициент таких потерь для вакуумной солнечной установки не более 0,6Вт/м2.

Определяем площадь эффективного поглощения

Расчет площади эффективного поглощения солнечного коллектора сделаем на примере популярной модели солнечного коллектора модели SCH-30, имеющей в своем составе 30 вакуумных трубок стандартного типоразмера. Определив эффективную площадь поглощения одной трубки и умножив ее на 30 получим общую эффективную площадь поглощения коллектора.

Площадь поглощения одной трубки – фактически площадь «тени» , создаваемой трубкой при ее освещении солнцем. Это проекция трубки на плоскость , проходящую через ее диаметр.

Поскольку диаметр трубки 58 мм или 0,058 м, а длина трубки участвующая в приеме солнца порядка 1600 мм или 1,6 м (общая длина трубки 1800 мм, но верхняя и нижняя ее часть закрыты элементами конструкции и в работе участия не принимают), тогда площадь «тени» составит 0,058 м * 1,6 м = 0,092 м2. А общая эффективная площадь поглощения коллектора 0,092 м2 * 30 шт. = 2,77 м2.

Аналогичным образом можно получить, что у коллектора модели SCH-18 (18 вакуумных трубок) эффективная площадь поглощения составит 1,66 м2, у модели SCH-20 (20 вакуумных трубок) – 1,86 м2, а у модели SCH-24 (24 вакуумных трубки) – 2,21 м2.

Расчет вырабатываемой энергии солнечным коллектором

Годовая вырабатываемая солнечным коллектором энергия определяется географической точкой установки коллектора и статистическими данными по годовой солнечной инсоляции в этом регионе.

Так, для Москвы и Московской области  показатель солнечной инсоляции за год составляет 1173,7кВт*час/м2. Используя полученное значение эффективной площади поглощения коллектора мы можем  рассчитать вырабатываемую им за год энергию.

Так коллектор модели SCH-30 выработает 2,77 м2 * 1173,7 кВт*ч/м2 = 3251,15 кВт*ч, но с учетом кпд=80 % только примерно 2600,0 кВт*ч.

По такому же методу легко произвести расчет производимой вакуумным солнечным коллектором энергии с любым другим количеством трубок. Например, вакуумный коллектор модели SCH-20 (20 вакуумных трубок) выработает за год  1173,7 кВт*ч/м2 * 1,86 м2 * 0,8 =1746,0 кВт*ч.

Беря статистические данные по солнечной инсоляции за месяц можно подсчитать количество вырабатываемой энергии за месяц.

Тем ни менее хочется сказать, что подбор оборудования – процесс сугубо индивидуальный для каждого клиента. Самостоятельный просчет мощности дает лишь весьма приблизительные значения, а риск не учесть один, казалось бы, незначительный фактор, может заметно снизить КПД системы.

Доверяя расчет солнечного коллектора профессионалам, легко стать обладателем максимально эффективного оборудования. Но в любом случае все расчеты носят условный характер. Погодный условия на планете меняются, солнечная активность тоже.

Данные по солнечной инсоляции носят очень усредненный показатель и год от года могут сильно меняться.

Расчет солнечного коллектора для ГВС

Как рассчитать солнечный коллектор

Солнечная энергетика – это не только свет, преобразованный в электричество. Это еще и горячая вода, и тепло в доме.

Чтобы преобразовать энергию солнечного излучения в тепло, нужны специальные установки – солнечные коллекторы.

В период с апреля по октябрь эти установки снабжают дома горячей водой, а в осенне-зимний период совместно с традиционными источниками энергии отапливают помещения.

Владельцам коттеджей, загородных домов использование солнечных коллекторов дает существенную экономию средств, так как горячая вода поступает в дом практически бесплатно.

Но для того, чтобы эти установки работали в самом оптимальном режиме, перед тем, как выбрать тип установки, ее месторасположение, необходимо выполнить хотя бы приблизительный, прикидочный расчет солнечного коллектора для ГВС (горячего водоснабжения).

Пример расчета для плоского гелиевого конвертера

Для начала нужно установить, какое количество солнечной энергии попадает на поверхность, установленную перпендикулярно лучам солнца. Известно, что на один квадратный метр поверхности, находящейся за пределами атмосферы, попадает 1367 ватт энергии Солнца.

Проходя через атмосферу, солнечное излучение теряет в мощности от трехсот до пятисот ватт.

Поэтому на поверхность Земли в ясную безоблачную погоду в средних широтах на один квадратный метр попадает от 800 до 1000 ватт мощности. Для расчетов принимается среднее значение – 900 ватт.

Для упрощения расчетов в качестве модели используется условный солнечный конвертер площадью в один квадратный метр.

Схема тепловых потерь плоского солнечного коллектора

Модель коллектора, принятая для расчетов, представляет собой установку, рабочая поверхность которой защищена специальным закаленным противоударным стеклом с антибликовым покрытием. Абсорбер покрыт жаропрочной селективной черной краской. Тем самым обеспечивается практически 100% поглощение тепловой энергии.

Тыльная сторона коллектора представляет собой слой теплоизоляции толщиной в десять сантиметров. Теплоизоляция чаще всего выполняется на основе минеральной ваты. Чтобы рассчитать потери тепла, неизбежно возникающие на теневой стороне, необходимо знать коэффициент теплопроводности минеральной ваты.

Для легкой минеральной ваты этот коэффициент составляет 0.045.

Для расчета предполагается, что разница температур на лицевой и тыльной сторонах теплоизоляции составляет до 50°. Следовательно, при толщине теплоизоляции десять сантиметров потери тепла составят:

0.045:0.1×50=22.5 Вт

Примерно такие же потери тепла возможны с торцевых поверхностей коллектора и от труб. Таким образом, суммарные потери тепла составят 45 ватт. Для расчета необходимо внести корректировочные поправки на возможную облачность, загрязнение стекла коллектора, налипание посторонних предметов (например, листьев с деревьев).

Поэтому в расчете следует принять нижнюю границу значения мощности солнечной энергии, приходящейся на один квадратный метр — 800 ватт на один квадратный метр. В качестве теплоносителя в плоских солнечных конвертерах используется вода.

Чтобы нагреть один литр воды на один градус, необходимо затратить энергию в 4200 джоулей, что соответствует мощности в 1.16 ватта.

https://www.youtube.com/watch?v=9DTEyuhHZMUu0026t=48s

Зная эти величины, можно рассчитать то количество воды, которое будет нагрето в течение одного часа в условном солнечном коллекторе с рабочей площадью в один квадратный метр:

800 : 1.16 = 689.65

То есть за один час гелиевый коллектор площадью в один квадратный метр сможет нагреть на один градус почти 700 литров воды. Из этого расчета следует, что если необходимо нагревать воду на два, три, десять градусов, то расходуемую мощность необходимо соответственно увеличивать.

800 : (1.16 × 10) = 68.96

Следовательно, чтобы в течение часа нагреть воду на десять градусов, через условный солнечный коллектор нужно пропустить не более 69 литров воды (вес одного литра воды равен одному килограмму). Согласно санитарным правилам и нормам (СанПиН), принятым в 2009 году, температура горячей воды, подаваемой в дома, должна находиться в пределах от +60°С до +75°С.

Как показывает практика, для поддержания комфортных условий среды обитания на одного человека требуется в среднем примерно 50 литров горячей воды в день.

Для расчета количества энергии принимаем это значение и верхнее значение температуры — +75°С.

Поскольку холодная вода, поступающая в коллектор, имеет начальную температуру порядка +10°С, мы получаем ту разницу температур, на которую необходимо нагреть воду:

75 – 10 = 65

Коллектор следует расположить таким образом, чтобы угол наклона его примерно соответствовал географической широте местности, а ориентация была бы на юг. Возможны небольшие отклонения на юго-восток или юго-запад.

Для определения количества тепла, необходимого для нагрева 50 литров воды на 65°, применима формула:

W = Q × V × Tp = 1,16 × 50 ×65 = 3770 (ватт энергии)

Теперь остается вычислить площадь гелиевого коллектора. По таблицам метеорологов для данной конкретной местности следует уточнить то количество энергии Солнца, которое получает здесь один квадратный метр поверхности. Для нашего расчета это значение принято 800 ватт. Разделив вычисленное значение W количества энергии на 800 ватт, мы получим искомую площадь коллектора:

3770 : 800 = 4.71 (квадратных метров)

Это значение соответствует значению площади гелиевого коллектора, который обслуживает одного человека. Для нагрева воды для двух, трех или более человек эту площадь следует увеличить в соответствующее число раз. При стандартных размерах рабочей площади в 2.0 м² — 2.2 м² для нагрева воды на семью из трех человек необходимо установить шесть плоских солнечных коллекторов.

Аналогичным образом производится расчет площади и количества гелиевых коллекторов для организации отопления. Единственное, на что нужно будет сделать поправку, так это на объем теплоносителя, так как в данном случае его потребуется больший объем.

Графический метод расчета системы горячего водоснабжения

Поскольку для определения количества оборудования, которое необходимо приобрести для организации солнечного нагрева воды и подачи ее в дом, особая точность не требуется, многие изготовители и поставщики систем горячего водоснабжения разработали собственные методики расчета, воплотив их в простейшие графики.

По таким графикам любой потенциальный покупатель может самостоятельно определить свои потребности в тех или других компонентах системы нагрева воды. Ниже приведен один из таких графиков. Чтобы определиться с составом оборудования, необходимо выполнить несколько последовательных шагов.

Графическое определение состава оборудования для горячего водоснабжения

  1. Определить количество постоянных потребителей.
  2. Задать примерный объем расходуемой воды.
  3. На основании этих данных определить рекомендуемый объем бойлера.
  4. Задать оптимальную степень замещения суточных потребностей в тепле на энергию солнца.
  5. Выбрать грубо («Север» — «Юг») вашего месторасположения.
  6. Определить предполагаемую ориентацию гелиевых коллекторов.
  7. Задать угол наклона коллекторов по отношению к горизонту.

Выполнив эти действия, вы получите примерный состав оборудования, которое необходимо для удовлетворения ваших потребностей в горячей воде, а именно объем бойлера, количество коллекторов. А уж за вами остается решение, как именно использовать это оборудование – в качестве основной или вспомогательной системы горячего водоснабжения.

Зная состав системы ГВС, можно легко рассчитать стоимость всех компонентов, а также приблизительно рассчитать сроки окупаемости этого оборудования.

Солнечные коллекторы для нагрева воды

Как рассчитать солнечный коллектор
Перейти к содержимому

Солнечные коллекторы для нагрева воды – это наиболее распространенный и рентабельный способ использования солнечной энергии. Всё благодаря тому, что прямое преобразование солнечной энергии в тепловую имеет наибольшую эффективность, при этом потребление горячей воды стабильно на протяжении всего календарного года.

Как определить суточное потребление горячей воды

Суточную потребность в горячей воде можно приблизительно оценить на основании данных расходов воды основными санитарными приборами за одно применение (см. рисунок ниже).

Типичные значения расхода ГВС бытовыми приборами за одно применение

Зная привычки членов семьи, легко рассчитать суточное потребление для каждогопользователя и для всей семьи. Обычно расход горячей воды для одного человека в Европеравен 50–70 литров горячей воды за день, при условии, что средняя температура горячей

воды составляет 45 °С. Учитывая, что не многие потребители в Украине экономят горячую воду, то расход воды может быть выше.

Подогрев такого количества санитарной горячей воды требует существенных затраттепловой энергии, с учетом теплопотерь в трубах на рециркуляции, составляет не менее

3,65 кВтч/сут на одного пользователя. В месяц понадобится более 109 кВтч энергии. А для семьи из 4-х человек – 435 кВтч в месяц.

Как подбирается количество солнечных коллекторов для нагрева воды

Эффективность системы определяется двумя параметрами: процентом покрытия (замещения) необходимого тепла от солнечных коллекторов и эффективностью гелиосистемы. Для обеспечения этого баланса необходимо вести расчет по наиболее солнечному летнему месяцу года.

Среднегодовое солнечное излучение в кВтч/м² горизонтальной поверхности в год и поступление солнечной энергии на 1 м² площади коллектора, установленного под углом 45° и ориентированного в южном направлении для каждой условной зоны.

Для упрощенного расчета необходимой площади солнечных коллекторов для нагрева воды следует воспользоваться следующей формулой:

S = Q/n*ƞ, где

  • Q — необходимое количество тепла в месяц, кВтч/мес.;
  • N — среднее количество тепла, поступающего на 1 м2 площади солнечного коллектора в самый солнечный месяц, кВтч/мес.;
  • ƞ — средний КПД гелиосистемы (как правило, в пределах 0,5–0,6).

При условии среднего расхода горячей воды 70 л в сутки, в зависимости от региона установки гелиосистемы, необходимо от 1 до 1,5 м2 полезной площади солнечных коллекторов для нагрева воды на одного человека.

Возможность использования солнечной энергии не совпадает по времени с потреблением горячей воды.

Как правило, утром и вечером потребление находится на максимальном уровне, а солнечной энергии в это время недостаточно.

Поэтому водонагреватель гелиоустановки выполняет функцию аккумулирования тепловой энергии, чтобы предоставлять теплую воду в то время суток, когда солнечной энергии недостаточно.

Пример расчета солнечных коллекторов для нагрева воды

Для примера рассчитаем среднегодовую производительность солнечных коллекторов для ГВС частного дома. Данные для расчета: Потребление ГВС для семьи из 3 человек — 210 л с температурой 45 °С. Линия рециркуляции 20 м, работает 8 ч/сут.

Место установки — г. Киев. Коллекторы расположены под углом 45° и ориентированы строго в южном направлении. Для примера в среде моделирования принимаем солнечные коллекторы ТМ Vaillant VFK 145 имеющий 2,35 м² полезной площади.

Объем бака аккумулятора 250 литров.

Пример расчета производительности солнечных коллекторов для нагрева воды

Для заданных параметров способна обеспечить в среднем 60% потребностей в горячей воде за год. В летнее время система способна обеспечить 100% горячей воды.

Для сравнения рассчитаем гелиосистему такими же параметрами, но добавив еще один солнечный коллектор.

Пример расчета с большим количеством солнечных коллекторов

При данном расчете прогнозируемый процент покрытия от гелиосистемы в среднем составит 71%. Однако ожидается высокий уровень переизбытка энергии летом, что может привести к частым стагнациям.

При дальнейшем увеличении количества коллекторов процент покрытия увеличивается незначительно, а эффективность гелиосистемы падает.

Это происходит из-за того, что водонагреватель и теплоноситель в солнечных коллекторах работают на более высоких температурах, следовательно, увеличиваются тепловые потери.

Зависимость процента покрытия от количества солнечных коллекторов

Таким образом, оптимальный процент покрытия для солнечных установок горячего водоснабжения рекомендуется выбирать в пределах 60–70%.

Объекты с большим потреблением ГВС

Для потребителей с большим объемом потребления горячей воды, таких как гостиницы, рестораны, школы и т.д. нормы потребления ГВС могут отличаться. В таблице ниже приведены типичные значения среднего расхода и температуры горячей воды для различных групп потребителей.

В условиях украинского климата и солнечного излучения 1 м2 солнечного коллектора может производить в среднем до 3,6 кВтч/сут в летнее время. Исходя из этого для оптимального соотношения эффективности и процента замещения следует подбирать солнечные коллекторы для нагрева воды согласно отношению 1 м² коллектора на каждые 60-80 литров воды.

Рассмотрим пример использования солнечных коллекторов для нагрева воды. Потребление ГВС для гостиницы с 10 двухместными номерами. В каждом номере находится душ.

Среднее потребление горячей воды — 100 л / (гость х день). Линия рециркуляции 60 м, работает 8 ч/сут. Место установки — г. Одесса. Коллекторы расположены под углом 45° и ориентированы строго на юг. Общий расход воды составляет в среднем 2000 л в день с температурой 45 °С .

Пример использования гелисистемы для обеспечения ГВС гостиницы

Согласно рекомендации, подбираем 12 солнечных коллекторов Vaillant VFK. Бак аккумулятор объемом 2000 л, исходя из требования не менее 50 л объема водонагревателя на каждый м² полезной площади солнечного коллектора и суточного расхода горячей воды. Такая компоновка системы способна экономить до 65% традиционных энергоресурсов в год благодаря солнечной энергии.

Пример использования гелиосистемы для обеспечения сезонного ГВС гостиницы

Если такая же по размеру гостиница будет работать только в курортный сезон, то процент покрытия может составить до 97 %. А тепло, которое вырабатывается в оставшееся время года возможно направить на частичное поддержание дежурного отопления гостиницы.

Про эффективность и КПД солнечного коллектора

Как рассчитать солнечный коллектор

В данной статье мы попытаемся изложить основные формулы для расчёта КПД солнечного коллектора (СК), максимально простым языком. Солнечный коллектор (водонагреватель) предназначен для преобразования солнечного излучения в тепло для нагрева жидкого теплоносителя или просто воды.

В первую очередь нас интересует КПД, или Эффективность, т.е. какую часть от мощности падающего солнечного излучения, коллектор способен преобразовать в нагрев теплоносителя.

Мощность падающего солнечного излучения обозначим буквой – G

Полезную Мощность Солнечного Коллектора – Q

Q (Полезная мощность коллектора (dT)) = G (Падающая мощность ) – P (Тепловые потери Солнечного коллектора)

Стандартный график для Полезной мощности приведен на рис.1.

Рис.1

Ось Х: – дельта Т (dT ) разница между температурами окружающей среды и теплоносителя в Солнечном Коллекторе.

Ось Y: Q (Полезная мощность коллектора от (dT) или КПД.

Это стандартный вид графика эффективности для любых Солнечных коллекторов (Водонагревателей).

Любой солнечный коллектор характеризуется сложной функцией тепловых потерь P от dT . Но на практике, удобнее всего работать нес функцией тепловых потерь P от dT, а с её приближением в виде ряда Тейлора второго порядка.

Institute fur Solar energie forscung GmbH, сертифицирующий Солнечные коллектора в Германии, в отчётах указывает все необходимыекоэффициенты квадратичного приближения, что позволяет с хорошей точностью вычислять полезную мощность солнечного коллектора,в зависимости от условий эксплуатации.

Формула Полезной мощности коллектора Q от (dT) приобретает понятный вид.

Q= G”(&)*K(&)*R- a1* dT – a2*(dT)2

G – Мощность падающего излучения перпендикулярно плоскости Солнечного коллектора G” = G*cos(&) – Мощность при угле падения &.

& – угол падения лучей

Рис.2

K(&) – IAM (Incidence Angle Modifier) – Коэффициент учитывающий потери в мощности солнечного коллектора в зависимости от угла падения солнечных лучей.Обычно приводится значение для угла &=50°.

Для хорошего Плоского Солнечного Коллектора
К(50°) около 0.92
К(70°) около 0.55

Для Вакуумного Солнечного Коллектора
К(50°) около 1.42
К(70°) около 1.50

R – оптический КПД, учитывающий эффективную площадь абсорбера, коэффициент теплопередачи от абсорбера к жидкому теплоносителю и потери на прозрачностисветопропускающего покрытия. Численно равен мощности при нулевой дельте температур.

РЕМ: У вакуумного коллектора K(&) растёт с отклонением от нормали, за счёт цилиндрической формы абсорбера, компенсируяуменьшение мощности G*cos(&).

dT– разница между температурами окружающей среды и теплоносителя в Солнечном Коллекторе.
a1 и a2 тогда имеют понятный физический смысл:
a1 – теплопотери теплопроводностью
a2 – теплопотери излучением.

Для хорошего Плоского Солнечного Коллектора
a1, около 4 Ватт/(m2*T)
a2, около 0.015 Ватт/(m2*T2)

Для Вакуумного Солнечного Коллектора
a1, около 1.8 Ватт/(m2*T)
a2, около 0.005 Ватт/(m2*T2)

Теперь вернёмся к нашему графику.

Первая точка – это пересечение с осью Yмаксимальная Мощность Солнечного Коллектора при dT = 0

Вторая точка – это пересечение с осью Хэто температура стагнации или максимальная дельта при Q = 0 (нулевой производительности).

Из за наличия – a2*(dT)2, график не прямая линия соединяющая макс мощность и температуру стагнации, а парабола загибающаяся вниз.

Теперь, имея формулу полезной мощности, мы можем её наглядно проанализировать и понять, что с чем связано и от чего как зависит.

Температура стагнации

Температура стагнации в основном определяется характеристиками Селективного Покрытия (на внутренней колбе в вакуумной трубке и на абсорбере в плоском коллекторе).

Связано это с тем, что существенный вклад в тепловые потери солнечного коллектора при максимальных температурах, вносит член a2*(dT)2, ответственный за переизлучение.

В экспериментах можно не пропуская воду, просто измерив температуру стагнации, оценить качество Селективного покрытия.

Прозрачность светопропускающего покрытия

Прозрачность светопропускающего покрытия солнечному излучению. Поднимает весь график выше, увеличивая оптический КПД, за счёт большего пропускания энергии вовнутрь солнечного коллектора. Чем выше прозрачность, тем выше КПД.

Количество стёкол

Уменьшает Максимальную мощность при dT=0, но и уменьшает наклон графика, что может быть более выгодно при больших dT. Может повышать температуру стагнации

Качество и количество утепления корпуса

Почти не влияет на Максимальную мощность, но уменьшает наклон графика и увеличивает температуру стагнации.

Абсорбер

Абсорбер – это ключевой элемент солнечного коллектора. Нужно не только нагреть поглощающую поверхность, но и эффективно передать это тепло жидкому теплоносителю. По законам физики коэффициент теплопередачи зависит от толщины материала, по этому тонкая медная тепловоспринимающая панель в плоском коллекторе может быть менее эффективна, чем более толстая алюминиевая или стальная.

Теплообмен между теплосъемными трубками и жидкостью зависит от площади их контакта. По этому, тонкая медная трубка маленького диаметра, при передаче тепла жидкому теплоносителю, может работать хуже, чем такая же стальная, но большего диаметра, имеющая большую площадь поверхности теплообмена с жидкостью.

Рис.3

По этим причинам очень часто абсорбер, сделанный из тонкой меди с тонкими медными теплосъемными трубками, работает хуже, чем из толстого алюминия или стали с трубками большего диаметра.

Происходит уменьшение коэффициента теплопередачи тепла от тепловоспринимающей панели к теплоносителю, что приводит к увеличению температуры абсорбера при той же температуре теплоносителя, за счёт меньшей скорости теплообмена.

Большая температура абсорбера увеличивает тепловые потери и теплопроводностью и переизлучением, уменьшая КПД коллектора.

Температура стагнации может не изменяться, однако максимальная мощность и полезная мощность сползают вниз по оси Y, как бы смещаясь по оси Х, (dT) вдоль графика при прочих равных параметрах, как показано на Рис.3.

Экономим электричество: расчеты производительности солнечного коллектора

Как рассчитать солнечный коллектор

В статье будет рассмотрен наиболее простой метод расчета количества энергии, которую можно получить путем применения солнечного коллектора. Статистика гласит, что в среднем в домашнем хозяйстве для использования горячей воды требуется от 2 до 4 кВт. Тепловой энергии в день на 1 человека.

Данные для расчетов:

  1. Место применения – Московская область Площадь поглощения – 2,35м2 (на основе таблицы о среднем количестве поступления солнечной энергии для регионов РФ)
  2. Величина инсоляция в Московской области – 1173,7кВт*час/м2
  3. КПД – от 67% до 80% (будут использованы минимальные показатели, актуальные для устаревших коллекторов, поэтому результаты будут слегка занижены).
  4. Угол наклона коллектора – в расчетах будут использованы оптимальные данные угла наклона.

карта инсоляции россии

Рассчитываем площадь поглощения для одной трубки:

15 трубок = 2,35 м. кв.; 1 трубка = 2,35 / 15 = 0,15 м. кв.

Теперь, когда известна площадь, которую поглощает одна трубка, определим количество трубок, составляющий 1 м. кв. поверхности коллектора: 1 / 0,15 = 6, 66. Иными словами, на один метр поверхности поглощения требуется 7 трубок коллектора.

Далее производим расчет тепловой мощности одной трубки коллектора. Это даст возможность рассчитать число трубок, необходимых для получения достаточной тепловой энергии на периоды в один день и один год:

Получаемая мощность в расчете на один день рассчитывается следующим образом: 0,15 (S поглощения 1 трубки) x 1173,7 (величина инсоляции в Московской области) x 0,67 (КПД солнечного коллектора) = 117,95 кВт*час/м. кв.

Для расчета годовой эффективности одной трубки в выбранном регионе в формуле для расчета дневной мощности следует использовать годовые инсоляционные данные. Иначе говоря, на место 1173, 7 необходимо поставить региональное значения инсоляции.

Мощность, вырабатываемая при помощи одной трубки в Москве, составляет от 117,95 (при использовании КПД в размере 67%) до 140кВт*час/м.кв. (при использовании КПД в размере 80%).

В среднем за сутки одна вакуумная трубка теплового коллектора вырабатывает 0,325кВт*час.

В наиболее солнечные месяцы (июнь, июль) одна трубка будет производить 0,545кВт*час.

Работа солнечного коллектора без света невозможна, по этой причине указанные показатели нужно использовать при расчете светового дня.

Сколько можно сэкономить электроэнергии в Москве при использовании одного м. кв. коллектора (как мы выяснили, это 7 вакуумных трубок)?

Годовая экономия энергии составит:

117,95 кВт*час/м2 * 7 = 825,6 кВт*час/м.кв.

Наибольшую мощность солнечный коллектор, соответственно, будет вырабатывать в летние месяцы. К примеру, в июне при использовании 1 м.кв. коллектора выработка электроэнергии составит около 115–117 кВт*час/м.кв.

Иначе говоря, энергетическая польза при использовании солнечного коллектора с 15-ю вакуумными трубками, где S=2,35 м.кв. за период с марта по август при суммарном значении инсоляции за весь указанный период в 874,2 кВт*час/м.кв. составит: 874,2 * 2,35 * 0,67 = 1376 кВт, то есть, практически 1,4 МегаВт. энергии, что в день составляет примерно 8 кВт.

Вспомним статистическую информацию, приведенную в первой части статьи – в домохозяйстве используется от 2 до 4 кВт энергии при потреблении горячей воды одним человеком ежедневно. Данные показатели подразумевают использование коллектора для нагрева горячей воды и, в частности, таких нужд как принятие душа, мытье посуды и т.п.

Расчеты солнечного коллектора, состоящего из 15 вакуумных трубок, позволяют сделать вывод о том, что в огородный сезон данного устройства будет достаточно для того чтобы обеспечить горячей водой семью, состоящую из трех человек. В результате, при учете всех неблагоприятных обстоятельств, таких как пасмурная или дождливая погода, на электроэнергии, используемой для подогрева воды, можно очень неплохо сэкономить.

Если же говорить об оптимальных условиях (солнечная погода и отсутствие дождей), то в данном случае выработка тепловой энергии солнечным коллектором позволит вообще избежать необходимости платить за электроэнергию.

Примечания

Если в таблице с расчетами солнечной энергии в различных регионах РФ нет точной информации о регионе, в котором Вы проживаете, то можно воспользоваться информацией, которая указана на инсоляционной карте России. Это позволит узнать приблизительное значение получаемой тепловой энергии в расчете на один квадратный метр.

Эмпирическим путем определено: чтобы рассчитать инсоляцию для наиболее оптимального угла наклона солнечного коллектора, следует данные, указанные для выбранной площади, умножить на коэффициент 1,2.

Определение угла наклона солнечных коллекторов

К примеру, в таблице указано, что для Москвы значение энергии, которое доступно на протяжении светового дня, составляет 2,63 кВт*ч/м.кв. Иначе говоря, доступная годовая энергия составляет 2,63 * 365 = 960 кВт*ч/м.кв.

Таким образом, при оптимальном наклоне площадки в Москве коллектор будет вырабатывать приблизительно 1174 кВт*ч/м.кв.

Конечно, данный метод расчета не является высоконаучным, однако, с другой стороны, полученные данные вполне можно использовать для определения необходимого количества вакуумных трубок на бытовом уровне.

Итоги

Солнечные коллекторы из года в год обретают все большую популярность среди владельцев дачных участков. Очевидно, что это говорит о том, что данное устройство позволяет существенно сэкономить электроэнергию при нагреве воды, что подробно описано и доказано в вышеизложенных расчетных примерах.

Данный агрегат является актуальным практически для любого региона России. Но прежде чем купить солнечный коллектор, лучше посчитать рентабельности и сроки окупаемости этого оборудования, что позволит убедиться в актуальности представленного инновационного оборудования для применения в Вашем регионе.



Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.