Паровая турбина с генератором

Самодельная паровая турбина своими руками: принцип работы, устройство, кпд, схема

Паровая турбина с генератором

Идея практического применения энергии пара далеко не нова, использование паровых турбин в промышленных масштабах давно стало частью нашей жизни. Именно эти агрегаты, установленные на различных электростанциях и ТЭЦ, на 99% снабжают электричеством наши дома.

Однако, некоторые мастера-умельцы умудряются внедрить принцип преобразования тепловой энергии в электрическую у себя дома. Для этого используется самодельная паровая турбина минимальных размеров и мощности.

О том, как ее собрать в домашних условиях, и пойдет речь в данной статье.

Как работает паровая турбина?

В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать энергию топлива в электричество, иногда – в тепло.

На данный момент этот способ считается экономически выгодным. Технологически это происходит следующим образом:

  • твердое или жидкое топливо сжигается в паровой котельной установке. В результате рабочее тело (вода) обращается в пар;
  • полученный пар дополнительно перегревается и достигает температуры 435 ºС при давлении 3.43 МПа. Это необходимо для того, чтобы добиться максимального КПД работы всей системы;
  • по трубопроводам рабочее тело доставляется к турбине, где равномерно распределяется по соплам с помощью специальных агрегатов;
  • сопла подают острый пар на изогнутые лопатки, закрепленные на валу, и заставляет его вращаться. Таким образом, кинетическая энергия расширяющегося пара переходит в механическое движение, это и есть принцип действия паровой турбины;
  • вал генератора, представляющего собой «электродвигатель наоборот», вращается ротором турбины, в результате чего вырабатывается электроэнергия;
  • отработанный пар попадает в конденсатор, где от соприкосновения с охлажденной водой в теплообменнике переходит в жидкое состояние и насосом снова подается в котел на прогрев.

Примечание. В лучшем случае КПД паровой турбины достигает 60%, а всей системы – не более 47%. Значительная часть энергии топлива уходит с теплопотерями и расходуется на преодоления силы трения при вращении валов.

Ниже на функциональной схеме показан принцип работы паровой турбины совместно с котельной установкой, электрическим генератором и прочими элементами системы:

Чтобы не допускать снижения эффективности работы, на валу ротора располагается максимальное расчетное число лопаток. При этом между ними и корпусом статора обеспечивается наименьший зазор посредством специальных уплотнений.

Простыми словами, чтобы пар «не крутился вхолостую» внутри корпуса, все зазоры минимизируются. Лопатка сконструирована таким образом, чтобы расширение пара продолжалось не только на выходе из сопла, но и в ее углублении.

Как это происходит, отражает рабочая схема паровой турбины:

Следует отметить, что рабочее тело, чье давление после попадания на лопатки снижается, после рабочего цикла в первом блоке не сразу попадает в конденсатор.

Ведь оно еще располагает достаточным запасом тепловой энергии, а потому по трубопроводам пар отправляется во второй блок низкого давления, где снова воздействует на вал посредством лопаток другой конструкции.

Как показано на рисунке, устройство паровой турбины может предусматривать несколько таких блоков:

1 – подача перегретого пара; 2 – рабочее пространство блока; 3 – ротор с лопатками; 4 – вал; 5 – выход отработанного пара в конденсатор.

Для справки. Скорость вращения ротора генератора может достигать 30 000 об/мин, а мощность паровой турбины – до 1500 МВт.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П.

Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают.

Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника.

В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя.

Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой.

А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность.

Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Заключение

К сожалению, конструктивно паровые машины достаточно сложны и сделать дома турбину, чья мощность достигала хотя бы 500 Вт, весьма затруднительно. Если стремиться к тому, чтоб соблюдалась схема работы турбины, то затраты на комплектующие и потраченное время будут неоправданными, КПД самодельной установки не превысит 20%. Пожалуй, проще купить готовый дизель-генератор.

Паровой электрогенератор: для котельных и дома, своими руками

Паровая турбина с генератором

Паровой электрогенератор представляет собой нечто схожее с солнечной батареей, но обладает гораздо более высокой производительностью, не говоря уже о доступности подобного рода устройств.

Само функционирование подобных агрегатов заключается в преобразовании механической силы в электрическую, посредством нагревания воды до того момента, когда она превращается в пар.

Именно данная сила приводит искомый механизм в движение.

Подобного рода агрегаты имеет смысл использовать в тех отраслях современной промышленности или бытовой сферы, где наблюдается достаточное большое количество парообразований, которые можно использовать в качестве преобразователя в электроэнергию. Именно генераторы парового типа получили широкое использование в котельных установках, где они образуют некую тепловую электростанцию вместе котлом и турбиной.

Такие агрегаты позволяют существенно экономить на своей эксплуатации, а также снизить затраты на получение электрической энергии. Именно поэтому, паровые установки зачастую считаются одними из основных рабочих узлов многих электростанций.

Кроме того, если изучить принцип действия, а также конструктивные особенности подобных паровых генераторов, можно попытаться реализовать их своими руками, с помощью определенных средств. Однако, о данной возможности пойдет речь чуть позже.

Устройство и принцип действия

По своим конструктивным особенностям, котельные установки обладают достаточно схожей структурой.

В их состав входит несколько рабочих узлов, которые принято считать определяющими — непосредственно сам котел, электрический генератор и турбина.

Последние два составляющих образуют кинетическую связь между собой, а одной из разновидностей подобных систем является турбинный электрогенератор парового типа.

Если смотреть более глобально, то подобные установки представляют собой полноценные тепловые электростанции, пусть и меньших габаритов. Благодаря своей работе, они способны обеспечивать электричеством не только гражданские объекты, но и крупные промышленные отрасли.

Сам же принцип действия паровых электрических генераторов сводится к следующий основным моментам:

  • Специальное оборудование производит нагрев воды до оптимальных значений, при которых она испаряется, образуя пар.
  • Получившийся пар поступает дальше, на роторные лопатки паровой турбины, что приводит сам ротор в движение.
  • В результате мы получаем сначала кинетическую энергию, преобразованную из получившейся энергии сжатого пара. Затем кинетическая энергия переходит в механическую, что приводит к началу работы турбинного вала.

Электрический генератор, входящий в конструкцию таких паровых установок, является определяющим. Это объясняется тем, что именно электрогенераторы осуществляют переход механической энергии в электрическую.

Читайте так же:  Узнаем все про кавитационные теплогенераторы

Это описание одной установки парового типа. Если требуется выделение большего количества энергии, то используется совокупность нескольких установок, объединенных вместе.

Подобное решение должно приниматься строго индивидуально, в зависимости от типов объекта, а также параметров требуемой мощности энергии. Только при таком грамотном подходе можно избежать убыточности в данном вопросе.

Критерии выбора

На сегодняшний момент существует достаточно широкий выбор всевозможных электрических генераторов, работающих на пару, поэтому нужно крайне внимательно подходить к вопросу выбора.

Чтобы данный выбор был обдуманным и взвешенным, надо обращать внимание на следующие показатели:

  • Мощность паровой установки (тепловая и электрическая).
  • Нужно также обратить внимание на то, с какой скоростью происходит вращение роторов генератора и турбины.
  • Тип применяемого тока — здесь речь идет об однофазном или трехфазном виде установок. В большинстве случаев, используется именно трехфазная система.
  • Показатели давления пара не только в сжатом виде, но и в свободном состоянии.

Внимательное отношение к данным критериям позволит существенно упростить выбор, тем самым помогаю потребителю получить нужный ему агрегат. Чтобы было более наглядно, рассмотрим несколько моделей паровых электрогенераторов, пользующихся наибольшим спросом.

Обзор моделей

В нашей стране есть несколько предприятий, занимающихся производством паровых электрогенераторов. В частности, речь идет о турбогенераторах компаний «Калужский турбинный завод» и ОАО «Росэлектромаш». Рассмотрим несколько моделей, произведенных на обоих предприятиях.

ПТ-40/50-8,8/1,3 представляет собой паровую турбину, используемую в различных схемах с утилизацией тепловой энергии, а также отходов производственного типа. Среди потенциальных покупателей данной продукции числятся крупные промышленные предприятия и электростанции.

Технические характеристики:

  • показатели номинальной мощности — от 12000 кВт до 80000 кВт;
  • показатель давления пара — от 3 до 12,8 МПа;
  • температурные показатели пара — от 420 до 550 C;
  • производственное давление — от 0,5 до 1,75 МПа;
  • отопительное давление — от 0,07 до 0,25 МПа.

П-6-3,4/1,0 — это турбина парового типа, обладающая производственным отбором пара.

Технические характеристики:

  • показатели номинальной мощности — от 4000 кВт до 55000 кВт;
  • показатель давления пара — от 1,1 до 8,8 МПа;
  • температурные показатели пара — от 260 до 445 C;
  • производственное давление — от 0,4 до 1,3 МПа.

ПР-13/15,8-3,4/1,5/0,6 используется во многих ТЭС, а также на предприятиях промышленного типа, где присутствует необходимость в подаче пара заданного показателя.

Технические характеристики:

Читайте так же:  Обзор распределительных электрических шкафов

  • показатели номинальной мощности — от 2500 кВт до 35000 кВт;
  • показатель давления пара — от 1,2 до 9,3 МПа;
  • температурные показатели пара — от 290 до 540 C;
  • производственное давление — от 0,4 до 1,75 МПа;
  • давление за турбиной — от 0,07 до 0,9 кПа.

К-66-8,8 относится к конденсационным типам паровых турбин.

Технические характеристики:

  • показатели номинальной мощности — от 6000 кВт до 70000 кВт;
  • показатель давления пара — от 1,57 до 12,8 МПа;
  • температурные показатели пара — от 320 до 500 C;
  • давление за турбиной — от 4 до 10,6 кПа.

К-37-3,4 — это паровая турбина конденсационного типа, обладающая воздушным конденсатором.

Технические характеристики:

  • показатели номинальной мощности — от 37000 кВт до 37300 кВт;
  • показатель давления пара — от 2,9 до 3,7 МПа;
  • температурные показатели пара — от 390 до 445 C;
  • давление за турбиной — 15 кПа.

Данная продукция производится на Калужском турбинном заводе. Теперь рассмотрим модели от ОАО «Росэлектромаш». Здесь представлены уже полноценные турбогенераторы, в которых используются турбины парового и газового типа.

Вне зависимости от марки модели, в комплект продажи входят следующие комплектующие:

  • генератор;
  • система возбуждения;
  • аппаратные органы автоматики, сигнализации и контроля;
  • запчасти;
  • специальный инструмент для монтажа и сопутствующие материалы;
  • различные инструкции по применению.

Нашему вниманию представлены турбогенераторы серии ТВФ. Описывать их детально не имеет смысла, поэтому посмотрим на их технические данные.

Технические характеристики ТВФ-63-2:

  • показатель мощности — 63000 кВт;
  • степень напряжения — 6300 В;
  • статорный ток — 7217 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98%;
  • общий вес — 107900 кг.

Технические характеристики ТВФ-63-3600:

  • показатель мощности — 50000 кВт;
  • степень напряжения — 11000 В;
  • статорный ток — 3280 А;
  • частота вращения — 3600 оборотов в минуту;
  • КПД в процентном соотношении — 98,3%;
  • общий вес — 107950 кг.

Технические характеристики ТВФ-110-2E:

  • показатель мощности — 110000 кВт;
  • степень напряжения — 10500 В;
  • статорный ток — 7560 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98,4%;
  • общий вес — 145000 кг.

Технические характеристики ТВФВ-110-2:

  • показатель мощности — 110000 кВт;
  • степень напряжения — 13800 В;
  • статорный ток — 5752 А;
  • частота вращения — 3000 оборотов в минуту;
  • КПД в процентном соотношении — 98,45%;
  • общий вес — 190000 кг.

Стоимость данных моделей нужно уточнять у производителя, но можно сказать, что она переваливает за несколько миллионов рублей.

Говорить о целесообразности покупки парового электрогенератора для личных нужд не приходится, потому что его стоимость очень высока для обычного бытового использования. Иными словами, подобные вложения вряд ли окупятся в течение жизни потенциального покупателя.

Кроме того, габаритные размеры подобных установок, что размещать их необходимо на очень большой территории.

Именно поэтому, на бытовом уровне используются агрегаты, у которых двигатель работает на бензине или дизеле, а для крупных предприятий как раз и подходит двигатель, работающий на пару.

Что касается использования электрогенераторов, работающих на пару, то их использование в котельных установках может принести определенные плоды. Дело в том, что по достижении некоторых показателей мощности, данные установки показывают очень хорошие рабочие характеристики, выгодные отличающие их от своих аналогов.

Подробный рассказ про паровой генератор

Изготовление своими руками — возможно ли это?

Паровые электрогенераторы обладают очень сложной структурой, поэтому изготовление своими руками подобных агрегатов достаточно проблематично.

Тем не менее, при наличии некоторых знаний и необходимых материалов, сделать данный агрегат своими руками становится возможным.

Понятно, что итоговый вариант будет куда меньшего размера, чем заводские варианты. Кроме того, здесь будет совсем другое устройство для привода в движение имеющегося генератора — если в заводских моделях за это отвечает паровая турбина, то в домашнем варианте это будет делать двигатель.

На видео продемонстрирован походный паровой мини-генератор

Паровая турбина принцип работы: устройство своими руками, схема на 10 кВт, самодельная газовая, как сделать

Паровая турбина с генератором

В турбинной установке находящейся в котле, три среды: вода, пар, а также конденсат образуют такой себе замкнутый цикл. В процессе преобразования, при этом, теряется лишь небольшое количество пара и воды.

Это количество воды постоянно восполняется добавкой в установку сырой воды, которая проходит предварительно через водоочиститель.

Там вода подвергается обработке химическими составами, необходимыми для удаления содержащихся в воде, не нужных примесей.

Принцип работы:

  • Отработавший пар с довольно-таки пониженными давлением и температурой попадает из турбины в конденсатор.
  • Там он встречает на пути систему различных трубок, по которым непрерывно прокачивается с помощью циркуляционного насоса охлаждающая вода. Берут ее преимущественно из рек, озер или прудов.
  • Соприкасаясь с холодной поверхностью трубка конденсатора, выработавший пар конденсируется, превращаясь тем самым, в воду (конденсат).
  • Непрерывно откачиваясь из конденсатора специальным насосом, конденсат через подогреватель попадает в деаэратор.
  • Оттуда насос передает его в паровой котел.

В установке имеется также турбонаддув и подогреватель. Его функцией является необходимость сообщить конденсату добавочное количество тепла. Современные паротурбинные установки преимущественно оборудованы несколькими подогревателями.

К тому же, для подогрева питательной жидкости необходима, главным образом, теплота от пара, который отбирается из промежуточных ступеней самой турбины в пределах 15-30% от совокупного расхода пара. Это дает хорошее повышение КПД установки.

Современная паровая электростанция в действии

Тепло, отработанного в турбине пара поступает в конденсатор через трубки. Количество высвобождаемого тепла велико, и, следовательно, охлаждающая вода должна быть нагрета незначительно.

В виду этого, расход у мощных паротурбинных установок очень велик. Иногда он достигает до 20000 м3/час. Особенно если мощность станции 100000 кВт.

В этих случаях охлаждающая вода подается циркуляционным насосам из речки и после выполнения своей функции сливается снова в реку, только ниже места забора.

https://www.youtube.com/watch?v=epJvdh0Ilgsu0026t=148s

В паровых турбинах строение таково, что потенциальная энергия пара, пройдя процесс расширении в соплах, преобразуется в кинетическую энергию, способную двигаться с большой скоростью. Мощная струя пара подается на изогнутые лопатки, которые закреплены по окружности диска, насаженного на вал. Воздействие сильной струи пара на лопасти и приводит вал во вращение.

Чтобы преобразовать энергию пара в кинетическую, нужно обеспечить ему беспрепятственный выход из парогенератора, в котором он находится, по соплу, в пространство. При всем этом, давление пара необходимо выше, чем давление того самого пространства. Следует знать, что пар будет выходить с очень высокой скоростью.

Скорость выхода пара из сопла зависит от таких факторов:

  • От температуры и давления до расширения;
  • Какое давление присутствует в пространстве, в которое он вытекает;
  • Форма сопла, по которому вытекает пар, также влияет на скорость.

Вал турбины должен соединяться с валом самой рабочей машины. Какой она будет, зависит от области, в которой применяется рабочая машина. Это может быть энергетика, металлургия, приводы турбогенераторов, воздуходувные машины, компрессоры, насосы, водный и железнодорожный транспорт.

Самодельная электростанция

Прежде чем говорить о конструкции, подумайте, какой генератор вам доступен.

Существуют мощные малогабаритные генераторы для бытовых электростанций, но они слишком дороги, да и не всегда продаются отдельно от бензодвигателей.

Поэтому проще всего приобрести генератор от какого-нибудь грузовика, а в крайнем случае подойдет и от легкового автомобиля — все будет зависеть от задач, которые вы на него возлагаете.

Поговорим о простейшей электростанции, в которой используется генератор от старого легкового автомобиля (например, типа Г-12), который сможет обеспечить питанием 3…5 аварийных электроламп напряжением 12 В, размещенных в нескольких помещениях. К тому же, если вы смонтируете простой преобразователь на двух транзисторах, то 12 В постоянного тока превратите в 220 В переменного.

Мощности такого преобразователя вполне достаточно для питания небольшого полупроводникового телевизора и одной осветительной лампочки, кроме того, такая электростанция окажется полезна для подзарядки аккумуляторов. Работает агрегат следующим образом.

Бензиновый двигатель УМУ, закрепленный на специальной станине, через цепную передачу с передаточным соотношением 1:1 вращает промежуточный вал, на котором закреплен шкив клиноременной передачи. Для устойчивой работы генератора при токе полной нагрузки 20 А якорь должен вращаться с частотой 1600 оборотов в минуту.

Поэтому в клиноременной передаче соотношение диаметров шкивов должно быть не менее 1:4, то есть на промежуточном валу УМУ находится шкив большего диаметра, а на якоре генератора — меньшего. Выработанное постоянное напряжение 12 В подается через предохранители и выключатель в кабель и на преобразователь переменного тока.

На конце кабеля питания имеется двухштырьковый разъем для подключения в аварийную сеть дома, а от преобразователя идет отдельный шнур, заканчивающийся обычной «переноской» с двумя стандартными розетками. Преобразователь электростанции смонтирован в кожухе и закреплен на станине отдельным блоком.

Рис. 1.

Общий вид электростанции: 1 — генератор; 2 — кронштейн крепления генератора; 3 — рама УМУ; 4 — площадка крепления вентилятора; 5 — оградительная сетка; 6 — станина; 7 — кабель генератора 12 На станине электростанции предусмотрено крепежное место для кронштейна принудительного воздушного охлаждения двигателя.

Работу начните с подбора шкива промежуточного вала. Его диаметр должен быть в пределах 380… 400 мм. Только после этого вы можете вытачивать на токарном станке промежуточный вал. Станина агрегата (рис. 2) трубчатая Н-образная, приваренная к двум горизонтальным опорам.

Стальные трубы диаметром 30…35 мм нарежьте ножовкой по металлу и сварите с горизонтальными опорами газовой или электросваркой. Затем из листовой стали толщиной 2,5…3 мм изготовьте шесть штук «косынок» жесткости и площадку для крепления нижнего фланца рамы УМУ. Эти детали приварите к станине. Далее закрепите четырьмя болтами М8 раму УМУ к площадке.

Рис. 2. Станина: 1 — опора; 2 — косынка жесткости; 3 — вертикальная стойка; 4 — кронштейн генератора; 5 — площадка крепления нижнего фланца УМУ; 6 — балка станины; 7 — угловой фланец; 8 — площадка для крепления вентилятора Из той же листовой стали изготовьте передний угловой фланец и кронштейн генератора станины.

Закрепите их болтами М8 к раме УМУ и после этого приварите сваркой к вертикальным стойкам. В последнюю очередь приварите площадку для крепления кронштейна вентилятора принудительного охлаждения. На рисунке показан один из способов крепления ножек на опоры.

Эти места сделайте так, как сочтете удобным; возможно, вас больше устроят не ножки, а колеса для перемещения агрегата.

Рис. 3. Детали станины: А — определяется при установке рамы УМУ на станину, 1 — угловой фланец; 2 — кронштейн генератора; 3 — площадка крепления нижнего фланца УМУ; 4 — площадка крепления вентилятора. Сборка электростанции ничем особенным не отличается, ее можно производить в любом произвольном порядке, поэтому уделим особое внимание преобразователю.

Он представляет собой двухтактный генератор (мультивибратор) с трансформаторной связью. Собран он на двух транзисторах, включенных по схеме с общим эмиттером и трансформатором. Напряжение, снимаемое с делителя напряжения R1 и R2, задает смещение на базах обоих транзисторов.

В результате действия положительной обратной связи через базовую обмотку трансформатора мультивибратор запускается и начинает генерировать прямоугольные импульсы с частотой несколько кГц. Именно поэтому от генератора ни в коем случае нельзя питать приборы, рассчитанные на частоту 50 Гц, например, холодильник или ламповый телевизор.

Импульсное напряжение повышается обмоткой WIII трансформатора до амплитуды 220 В. Так как трансформатор работает на достаточно высоких частотах, чтобы потери мощности на транзисторах и в сердечнике были минимальными, желательно подобрать для сердечника материал с прямоугольной или почти прямоугольной петлей гистерезиса, например, пермалой 50НП, 65НП, 34НКНП, 79НН.

Использование феррита в данном случае не оправдано, так как частота генератора (мультивибратора) значительно ниже 50 кГц. Сердечник желательно использовать типа ШЛ 12х16… ШЛ 12х25. каркас из прессованного электрокартона или гетинакса толщиной 0,5… 0,8 мм. Обмотки WI — 62 (31+31) витка, намотанного проводом ПЭВ-1 диаметром 1,2 мм, WII 16 (8+8) витков ПЭВ-2 диаметром 0,23 мм.

Между ними прокладывается изоляция — один-два слоя лакоткани или фторопласта. Последней намотайте повышающую обмотку W III — 575 витков проводом ПЭВ-2 диаметром 0,23.

Рис. 4. Промежуточный вал: 1 — рама УМУ; 2 — промежуточная звездочка; 3 — шкив; 4 — шпонка; 5 — промежуточная ось УМУ. Транзисторы установите на радиаторах площадью 60…100 см2.

Монтаж навесной, на плате толщиной 2,5…4 мм. Транзисторы VT1 и VT2 — типа КТ 827 в металлическом корпусе. Индекс значения не имеет. Желательно подобрать их по коэффициенту усиления по току.

Конденсатор — К53-1, резисторы типа МЛТ-5 или ТВО.

Рис. 5. Принципиальная схема преобразователя. Правильно собранная схема начинает работать сразу, без предварительной настройки. При подаче напряжения питания трансформатор должен сразу запищать.

Если писка нет, то поменяйте местами крайние выводы обмоток WI и WII. Еще раз напомним. Использовать преобразователь для бытовой техники с двигателями (холодильники, миксеры, дрели и т.п.

) НЕЛЬЗЯ, так как они рассчитаны на работу от переменного напряжения с частотой 50 Гц.

Паровая турбина (видео)

Паровая турбина своими руками – агрегат, который является сердцем практически любой электростанции, работает по принципу превращения энергии из паровой в механическую. Однако такую машину вполне можно сделать и в домашних условиях.

Конечно же это будет мини-устройство, и скорее всего ваша самодельная турбина будет газовая или воздушная, но такая модель так же пригодится в быту как и паровая турбина для ТЭЦ.

Правильно разработанные схема, чертеж и рисунок помогут вам добиться положительного результата от самоделки.

Походная электростанция своими рукамиСлучайные материалы сайта Мороз! Как согреваться после замерзания. 6556Мини-обогреватель. 15515
Тиристорное реле указателя поворотов 9666Индикатор выходной мощности 7786
САМОДЕЛЬНЫЙ МОТОКУЛИТВАТОР 14295101 способ хищения электроэнергии 11997
Гараж на стене 10019Стол в саду 7460
Как покупать подержанный автомобиль 4858Делаем руль и педали к компьютеру 11239
Как избавится от комаров 13702Как из пластиковых бутылок сделать оригинальный самодельный пуфик 8766
Создать микроскоп х1000 своими руками 11588Подключение двух телевизоров к одной антенне 10256
Делаем микрофонный усилитель для компьютера самостоятельно 9144Ремонт застежки молния на одежде. Как отремонтировать замок типа молния самому без выпарывания. 14038
Выбираем напольное покрытие. 6392Капельный полив, орошение 66822
Соковыжималка своими руками 27584Экономная стирка 5778

Тепловая электростанция с поршневой паровой машиной

Паровая турбина с генератором

В газетах, журналах и интернете можно найти много статей, в которых доказаны экономические преимущества использования малых тепловых электростанций. Данная статья рассказывает, какие именно тепловые электростанции могут быть быстро и недорого изготовлены в настоящее время.

Автор считает, что материал будет полезен всем тем, кто принял решение внедрить распределённую генерацию, но пока не определился с типом машины, которую предполагается использовать в электростанции.

Эта статья будет полезна и тем, кто принял решение использовать поршневую паровую машину, но пока не знает, с чего начать.

В.А. Жигалов, инженер-конструктор, г. Бийск

Введение

Рассмотрим энергоснабжение предприятий и других объектов, потребляющих одновременно тепловую и электрическую энергию. Таких, например, как предприятия пищевой промышленности, которые расходуют пар низких параметров для тепловой обработки продуктов и электроэнергию для холодильных установок.

Другой пример – лесопереработка, где пар необходим для сушильных камер, а электроэнергия для распиловки брёвен. Или тепличные хозяйства и многое, многое другое.

И, конечно, тепло- и электрообеспечение объектов ЖКХ, особенно небольших посёлков, включая объекты министерства обороны, перебои в электроснабжении которых часто приводят к остановкам котельных.

Известно, что совместное производство тепловой и электрической энергии более экономично, чем раздельное.

При небольшой величине потребления совместное производство тепловой и электрической энергии может производиться на малых тепловых электростанциях (МТЭС). Чаще всего на малых ТЭС химическая энергия топлива преобразуется в тепловую с помощью паровых котлов.

Затем заключённая в водяном паре тепловая энергия преобразуется в механическую с помощью паровых агрегатов – турбин, винтовых или поршневых машин.

Оставшаяся после агрегата тепловая энергия в зимнее время используется на отопление и технологические нужды, а в летнее время может использоваться на технологические нужды или для получения холода с помощью абсорбционных холодильных машин.

Такая схема может использоваться и на нефтедобывающих предприятиях, попутный газ которых не пригоден для работы газовых двигателей, но успешно сгорает в топке котла.

Удельный расход пара (количество килограммов пара, необходимое для производства 1 кВт∙ч механической энергии) для паросиловых установок не зависит от их типа, а зависит только от параметров поступающего в них пара и параметров пара на выходе из этих установок.

В поршневых паровых машинах весь поступивший в них пар совершает работу, а через турбины малой мощности и винтовые паровые машины часть поступившего пара проходит, не совершая работы. В связи с этим соотношение полученных от этих агрегатов механической работы и тепловой энергии сместится в сторону увеличения количества теплоты.

В табл. 1 показан удельный расход пара различными агрегатами. В ней собраны данные по поршневым паровым машинам (ППМ) и паровым турбинам серии ОР, выпускавшихся до 1950 г., а также по турбоагрегатам и винтовым паровым машинам (ВПМ), которые выпускаются в настоящее время.

К сожалению, данных о паропоршневых двигателях у автора нет.

Для сравнения экономичности агрегатов, использующих пар различных начальных параметров, фактический удельный расход пересчитан для пара со следующими параметрами:

– давление пара на входе в агрегат – 1,2 МПа

– температура пара на входе в агрегат – 260 °С

– давление пара на выходе из агрегата – 0,3 МПа

Таблица 1. Сравнительные характеристики паровых агрегатов малой мощности.

Вид

агрегата

Модель

агрегата

Давление пара

на входе

в агрегат,

МПа

Температура пара

на входе

в агрегат,

°С

Давление пара

на выходе
из агрегата,

МПа

Мощность агрегата, кВтФактический удельный расход пара,

кг/кВт•ч

Коэффициент пересчётаРасчётный удельный расход пара, кг/кВт•ч
ТурбиныОР-0,3-11,52600,1300251,0626,5
АП-0,753,54350,175013,11,1214,7
ТГ-0,75/Р131,22500,474017,60,9616,9
ОР-1,5-31,53500,3150014,51,0214,8
ТП-11001,472200,0480012,01,0412,5
ТП-3201,371940,1223518,50,9419,8
МашиныВинтовая паровая машина1,32500,1250301,0230,6
Поршневая паровая

машина

СК-500

1,63500,13706,81,087,4
Поршневая паровая машина ЛМ-Х1,33300,12457,91,078,5

Данные табл. 1. показывают, что удельный расход пара у поршневых машин, потребляющих пар низких параметров, примерно вдвое ниже, чем у турбин, потребляющих пар тех же параметров.

МиниТЭС с поршневой паровой машиной

Условно МТЭС можно разделить на два относительно независимых модуля – энергетический и силовой (рисунок).

Рис. 1. Принципиальная схема МТЭС с поршневой паровой машиной.

Энергетический модуль состоит из парового котла и котельно-вспомогательного оборудования. Котёл (парогенератор) может быть как барабанным, так и прямоточного типа.

Прямоточный котёл должен постоянно работать в режиме оптимальной мощности, а пар, который не используется в настоящий момент, должен уходить в конденсатор (теплообменник). Перегрев пара является желательным условием, но отнюдь не обязательным.

В качестве энергетического модуля может использоваться любая действующая котельная.

Силовой модуль состоит из ППМ и соединённого с ней электрогенератора. Следует отметить, что при необходимости изменения соотношения получаемых от паровой машины тепловой и электрической энергий эта машина должна быть многоцилиндровой. В этом случае возможны три варианта работы такой машины:

1. При работе в режиме однократного расширения во все цилиндры подаётся пар из подводящей магистрали, после расширения в цилиндрах он отводится для дальнейшего использования.

2. В режиме двойного расширения пар из подводящей магистрали подаётся в меньшую часть цилиндров, и из них расширившийся пар вытесняется в ресивер. В остальные цилиндры пар подаётся из этого ресивера и срабатывается до атмосферного давления. В этом режиме может быть получено наибольшее количество механической или электрической энергии.

3. В режиме с промежуточным отбором пара в часть цилиндров, например, в половину, подаётся пар из подводящей магистрали, из них расширившийся пар вытесняется в ресивер. Часть пара из ресивера идёт на технологические нужды, а остальной подаётся в цилиндры второй ступени.

Изменение режима работы машины не требует никаких её регулировок, необходимы просто манипуляции вентилями, подключающими цилиндры к различным магистралям.

Расчёты доказывают, что, если к одинаковым котлам малой мощности присоединить силовые модули, один с паровой турбиной, другой с ППМ, то от силового модуля с ППМ можно получить большее количество механической/электрической энергии и по меньшей стоимости, чем от силового модуля с паровой турбиной.

Для изготовления ППМ можно использовать основные узлы двигателей внутреннего сгорания (ДВС) (рис. 2-4).

Рис. 2. Машина 2004 г. на базе двигателя Д6 (6Ч15/18), мощность 100 кВт:
выпуск пара через стандартные клапаны, впуск пара через двухседельные клапаны (г. Бийск).

Рис. 3. Машина 2011 г. на базе двигателя Д6, мощность 100 кВт:
впуск и выпуск пара через золотники с гидравлическим приводом.

Далее в табл. 2 представлены данные о мощности и расходе пара для ППМ однократного расширения, которые могут быть изготовлены на базе шести- или восьмицилиндровых рядных ДВС, выпускающихся в России.

Взяты именно рядные ДВС, поскольку они позволяют изготовить машины с горизонтальным расположением цилиндров. Расчёты проведены для машин различного объёма при трёх значениях величины давления пара.

Таблица 2. Характеристики ППМ на базе двигателей внутреннего сгорания.

Размерность двигателя

и производитель

Объем двигателя, лМощность машины, кВт

при давлении пара, МПа

Расход пара, кг/час

при давлении пара, МПа

1,22,23,61,22,23,6
14-15/20,5 ЧТЗ14,456615931879018002460
2
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.