Расчет прогиба консольной балки

Содержание

Способы произвести расчет балки на прогиб, и что поможет добиться прочности

Расчет прогиба консольной балки

Проектируя современные постройки, специалисты придерживаются всех правил и установленных норм в строительстве. Важнее всего сделать расчет балки на прогиб, а так же расстояние между лагами пола, поскольку эти показатели являются важным для прочности и надежности всей конструкции.

С помощью балок строится важная часть дома – потолок Источник pol-exp.com

Виды балок

Независимо от того, какой должна быть конструкция, материал для изготовления балок выбирают прочный и надежный. Отличаются они друг от друга лишь по своим параметрам: 

Чаще всего, для изготовления балок используется дерево и металл. Расчет балки на изгиб напрямую зависит от выбранного материала. В данном случае большое значение имеют такие показатели как однородность и структура.

Балки из дерева

Конструкции из дерева используются в одноэтажных домах или небольших домиках. Они отлично подходят как для потолка, так и пола. Для расчета прогиба балки берут следующие величины:

  1. Тип материала. Каждое дерево отличается прочностью, твердостью и гибкостью.
  2. Геометрические показатели, в которые включается как форма изделия, так и его сечение.
  3. Предполагаемые нагрузки, которые будут давить на материал.

На то, как будет изгибаться балка учитывается не только реальное давление, но и все возможные силы воздействия.

Эти изделия очень сложные не только по сечению, но и по составу. Так как из выливают из нескольких видов металла. Производя расчет нагрузки на балку, необходимо принимать во внимание насколько она жесткая, а так же прочно ли она соединена.

Балки из стали используют для строительства многоэтажных домов Источник i0.photo.2gis.com

Конструкция из металла между собой соединяется с помощью:

  • сваривания;
  • склепывания;
  • с помощью соединителей, имеющих резьбу.

Прочные металлические балки используются для строительства домов в несколько этажей. В таких конструкциях вся нагрузка равномерно распределяется по всей балке.

Каталог проектов домов с террасой.

Как добиться прочности конструкции

Согласно нормам, балка, используемая на эстакаде должна иметь изгиб не больше одного см при ее длине в полтора метра. При этом, в других конструкциях этот показатель меняется. В индивидуальном доме, балки чердака могут прогибаться на один см, при длине 2 м, а в многоэтажных домах тот же сантиметр должен припадать на длину в 2,5 м.

Для того, чтобы постройка была надежной и прочной, расчеты нужно проводить еще в процессе планирования здания. Именно в этот момент и определяется такой показатель, как изгиб балки.

Ведь чем меньше прогибается балка, тем выше прочность дома. Таким образом потолок получает равномерное распределение веса и сохраняет устойчивость дома.

Если же балки сильно прогибаются, то и весь потолок будет ненадежным и со временем происходит разрыв соединений и здание рушится.
Перед началом расчета, составляют схему давления на балку – макет будет кстати Источник pouznaval.ru

Расчеты проводятся с помощью одного из способов:

  1. Прибегнуть к помощи онлайн-калькулятора. В данном инструменте запрограммированы стандартные данные.
  2. Воспользоваться справочником и, сравнив все параметры, произвести расчеты самостоятельно.
  3. Воспользоваться формулой и самостоятельно просчитать изгиб балок.

Важно! Просчитывать изгиб балки очень важно, чтобы на практике здание было прочным и надежным.

В помещении, которое используется уже не один год, определить насколько аварийным является его состояние, можно только после того, как будет определен уровень проседания балок.

Формулы для определения изгиба балки

При расчете необходимо учесть силу сопротивления материала, из которого изготовлена конструкция. И только после этого рисуется схема, где указывается сила давления на балку.

Таким образом происходят измерения для вычисления изгиба Источник novainfo.ru
Каталог компаний, что специализируются на монтаже печей и каминов.

Процесс расчета выглядит следующим образом:

  1. Используя формулу площади прямоугольной фигуры S=b*h, определяется сечение балки, а так же берется ко вниманию ее длина L;
  2. На балку воздействует сила давления Q, которая изгибает ее в центре, а ее концы образуют угол θ. Обязательно учитывается изначальное положение конструкции f;
  3. В схеме концы импровизированной балки установлены совершенно свободно, при этом опоры установлены стационарно. В этом случае нет реакции, как в случае горизонтального закрепления конструкции, и концы балки перемещаются в свободном направлении.

Изгиб предмета под давлением определяется формулой Е=R/Δ. В этом случае Е – это показатель, который берется из справочника, R – сила давления на предмет, Δ – это показатель, который получается в процессе изгиба.

Имея все необходимые показатели можно узнать, какой будет инерция, для этого используется формула:

Δ = Q/(S·Е)

Если же нагрузка будет равномерна по всей длине балки. То нужно использовать такую формулу:

Δ = q·h/(S·Е).

После всех этих вычислений, приходит черед к определению изгиба по системе Юнга. То есть, балку изгибают таким образом, что ее концы выворачиваются в разные стороны, при этом имеют разные куты изгиба. В таком случае в формуле обе части нужно умножить на число L и тогда получается следующее равенство:

Δ*L = Q·L/(b·h·Е)

Формулы можно найти в справочнике Источник pol-exp.com

Если рассматривать вариант, где балка с одной стороны будет стабильно зафиксирована, а на втором конце будет равновесие, то формула будет выглядеть следующим образом Mmax = q*L*2/8. Если использовать эту величину в формуле для определения изгиба балки, то получится следующее равенство:

Δх = M·х/((h/3)·b·(h/2)·Е).

Момент инерции, который вычисляется b·h2/6 можно условно обозначить W. Таким образом, формула будет иметь совершенно другой вид:

Δх = M·х/(W·Е), где W=M/E.

Чтобы узнать точные показатели изгиба балки, необходимо рассчитать две величины:

Кроме того, на прогиб имеет огромное влияние условие, при котором концы балок будут либо зафиксированы, либо находиться в свободном положении. Обязательно учитывается способ давления оказываемого на предмет, а так же в каких местах оказывается это давление и как оно распределяется по всей балке.

Все приведенные выше формулы можно использовать только в том случае, когда давление равномерно распределено по всей площади предмета. В том случае, когда нагрузка припадает только на одно определенное место, расчет проводится при помощи интегралов.

Правильные расчеты – гарантия прочности конструкции Источник remontik.org

Важно! Для проведения расчетов рекомендуется все же воспользоваться уже существующими сборниками формул. Такие пособия разрабатывались проектировщиками, исходя из разных ситуаций.

Таким образом, для точного определения изгиба балки следует все делать в следующей последовательности:

  1. В первую очередь составляется подробная схема предмета, который будет исследоваться;
  2. Измеряются все параметры балки и обязательно учитывается сечение;
  3. Определить каким будет максимальное давление на балку, а так же вычислить в каком месте будет оно оказано сильнее всего;
  4. Обязательно нужно проверить материал из которого изготовлена балка на прочность.
  5. Обязательно определить жесткость предмета.

О расчете прогиба балки в видео:

Заключение

Перед началом строительства все профессиональные проектировщики проводят расчет изгиба балки и определяют расстояние между лагами. Поскольку именно от этих манипуляций зависит прочность будущего дома.

Это можно сделать и с помощью онлайн-калькулятора, но для отчетности перед заказчиком необходимо предоставить все цифры документально.

Поэтому все операции в показателями и величинами делаются последовательно вручную на бумаге.

Прочитать позже

Отправим материал на почту

Расчет на прочность и прогиб балки при ударе

Расчет прогиба консольной балки

12 Янв 2014
Рубрика: Механика | 4

Расчет на прочность при ударе в обычной работе инженера-конструктора встречается не очень часто. Поэтому возникновение такой задачи может поставить в тупик своей неожиданностью. Расчеты при ударных, то есть динамических нагрузках очень сложны и часто производятся…

…по эмпирическим – полученным из практических опытов — методикам и формулам. В этой статье мы рассмотрим расчет по приближенной теоретической формуле, которая, однако, позволяет быстро, просто, понятно и с достаточной для многих случаев жизни точностью учесть динамическую составляющую нагрузки!

Выполним расчет на прочность и определим прогиб балки при воздействии ударной нагрузки на примере консоли.

Общий подход к статическим расчетам на прочность при изгибе подробно изложен в статье «Расчет балки на изгиб – «вручную»!», где приведены уравнения общего вида, позволяющие произвести расчет на прочность балки с любыми опорами и при любых нагрузках.

Расчеты выполним в программе MS Excel. Вместо MSExcelможно воспользоваться программой OOo Calc из свободно распространяемого пакета Open Office.

С правилами форматирования ячеек листа Excel, которые применены в статьях этого блога, можно ознакомиться на странице «О блоге».

Расчет консольной балки при ударе

Расчет на прочность, который мы будем выполнять, является приблизительным.

Во-первых, предполагаем, что вся потенциальная энергия груза, падающего с некоторой высоты, переходит в кинетическую энергию, которая при соприкосновении груза с балкой полностью переходит в потенциальную энергию деформации. В реальности часть энергии превращается в тепло.

Во-вторых, мы не будем учитывать в расчете массу балки. То есть прогиб балки под действием собственного веса примем равным нулю! (Чем меньше вес балки относительно веса груза, тем точнее результаты, полученные по рассматриваемой методике расчета!)

В-третьих, прогиб балки при ударе будем определять как прогиб от статического воздействия груза с весом больше реального веса груза на величину, определяемую коэффициентом динамичности. То есть силу при ударе найдем как сумму веса и силы инерции груза при торможении.

В-четвертых, считаем, что груз не отскакивает при ударе, а перемещается на величину динамического прогиба вместе с балкой. То есть удар абсолютно неупругий!

В-пятых, учтем ограничение, что ошибка расчета не превысит 8…12% только в случае, если рассчитанный коэффициент динамичности будет не более 12!

На рисунке, расположенном ниже, изображена  расчетная схема.

Составим в Excel программу и в качестве примера выполним расчет на прочность и определим прогиб балки круглого сечения.

Исходные данные:

1. Вес груза G в Н записываем

в ячейку D3: 50

2. Высоту падения груза h в мм заносим

в ячейку D4: 400

3. Длину консольной балки L в мм вписываем

в ячейку D5: 2500

4. Осевой момент инерции поперечного сечения балки Ix в мм4 вычисляем для диаметра d=36 мм

в ячейке D6: =ПИ()*364/64 =82448

Ix=π*d4/64

5. Осевой момент сопротивления поперечного сечения балки Wx в мм3 вычисляем для диаметра d=36 мм

в ячейке D7: =ПИ()*363/32 =4580

Wx=π*d3/32

6. Допустимые напряжения материала балки (Ст3 сп5) при изгибе [σи] в Н/мм2 записываем

в ячейку D8: 235

7. Модуль упругости материала балки E в Н/мм2 вписываем

в ячейку D9: 215000

Результаты расчетов:

8. Максимальный изгибающий момент при статическом воздействии груза Mстx в Н*мм определяем

в ячейке D11: =D3*D5 =125000

Mстx=G*L

9. Максимальное напряжение при статическом воздействии груза σст в Н/мм2 вычисляем

в ячейке D12: =D11/D7 =27

σст=Mстx /Wx

10. Прогиб края консоли от статического воздействия груза Vстy в Н/мм2 рассчитываем

в ячейке D13: =D3*D53/3/D9/D6 =14,7

Vстy=G*L3/(3*E*Ix)

11. Коэффициент динамичности  вычисляем

в ячейке D14: =1+(1+2*D4/D13)0,5 =8,45

=1+(1+2*h/Vстy)0,5

12. Максимальное напряжение при динамическом воздействии груза σд в Н/мм2 вычисляем

в ячейке D15: =D12*D14 =231

σд=σст*

13. Прогиб балки в точке удара при динамическом воздействии груза Vдy в мм определяем

в ячейке D16: =D13*D14 =124,1

Vдy=Vстy*

14. Коэффициент запаса прочности k вычисляем

в ячейке D17: =D8/D15 =1,02

k=[σи]/σд

Эти примеры помогут сделать расчет металлической балки без напряга

Расчет прогиба консольной балки

Металлические балки двутавровые

Кроме повсеместно ведущегося строительства многоэтажных зданий с большим числом квартир, широкое распространение получило сооружение частных домов, причем не только небольших одноэтажных, но и довольно крупных, с двумя и более этажами, иногда и с мансардой наверху или обитаемым чердаком.

Для таких домов уже не подходит каркасный метод; материалом часто служит, вместо дерева, кирпич или железобетон.

Возведение крупных частных домов должно вестись по всем правилам строительной науки, так как ошибки при проектировании или воплощении проекта могут привести к нежелательным последствиям.

Если строящийся дом представляет собой капитальное здание – из бетона, кирпича, шлакоблока, то для потолочных перекрытий, межэтажных и чердачных, целесообразно применить железобетонные плиты. Наиболее подходящий тип каркаса, способный выдержать вес таких перекрытий, – это каркас, элементом которого является металлическая балка двутаврового профиля.

Именно этот вид проката, установленный своей стенкой вертикально, обладает наибольшей несущей способностью. Естественно, фундамент и стены дома при этом должны быть достаточной прочности, чтобы выдерживать дополнительный вес от 0,5 до 1 тонны – столько металла, в зависимости от количества балок и номера профиля может понадобиться для потолочного перекрытия.

Чтобы избежать лишних затрат и лишнего веса каркаса потолка, а также не допустить обрушения или значительного прогиба балок, необходимо заранее рассчитать их параметры и по результатам расчета подобрать нужный прокат. Расчет сводится к вычислению следующих величин: требуемого момента сопротивления и минимального момента инерции сечения балки, а исходя из последнего – максимального относительного прогиба.

Примечание Расчет ведется по двум характеристикам – на прочность и на жесткость. По полученным значениям момента сопротивления и момента инерции в таблицах ГОСТ находят требуемый номер проката.

Основные положения расчетных методик

Современные строительные методики расчета стержневых (балочных) конструкций на прочность и жесткость, дают возможность уже на стадии проектирования определить значение прогиба и сделать заключение о возможности эксплуатации строительной конструкции.
Расчет на жесткость позволяет решить вопрос о наибольших деформациях, которые могут возникнуть в строительной конструкции при комплексном действии различного вида нагрузок.

Современные методы расчета, проводимые с использованием специализированных расчетов на электронно-вычислительных машинах, или выполняемые при помощи калькулятора, позволяют определить жесткость и прочность объекта исследований.

Несмотря на формализацию расчетных методик, которые предусматривают использование эмпирических формул, а действие реальных нагрузок учитывается введением поправочных коэффициентов (коэффициенты запаса прочности), комплексный расчет достаточно полно и адекватно оценивает эксплуатационную надежность возведенного сооружения или изготовленного элемента какой-либо машины.

Несмотря на отдельность прочности расчетов и определения жесткости конструкции, обе методики взаимосвязаны, а понятия «жесткость» и «прочность» неразделимы.

Однако, в деталях машин, основное разрушение объекта происходит из-за потери прочности, в то время как объекты строительной механики часто непригодны к дальнейшей эксплуатации из значительных пластических деформаций, которые свидетельствуют о низкой жесткости элементов конструкции или объекта в целом.

Сегодня, в дисциплинах «Сопротивление материалов», «Строительная механика» и «Детали машин», приняты два метода расчета на прочность и жесткость:

  1. Упрощенный (формальный), при проведении которого в расчетах применяются укрупненные коэффициенты.
  2. Уточненный, где используются не только коэффициенты запаса прочности, но и производится расчет контракции по предельным состояниям.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

  • величина наружных нагрузок, их положение;
  • параметры, характер, нахождение поперечного сечения;
  • продольные величины;
  • материал;
  • число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

HOUSEHAND.ru —

Если стрелу прогиба облегающего шевера увеличить, то при обработке на колесах образуются зубья бочкообразной формы ( фиг. Бочкообразные зубья уменьшаются ( по толщине) от середины к торцам колеса на 0 01 — 0 03 мм.

Колеса с бочкообразными зубьями менее чувствительны к перекосу осей передачи, обеспечивают положение пятна касания посередине зуба, способствуют уменьшению шума передачи и других недостатков.

Колеса с бочкообразными зубьями могут быть обработаны и обычными шеверами, но на станках со специальным устройством.

Особенностью расчета этих шеверов является определение стрелы прогиба боковой поверхности зубьев и изменения толщины зуба по длине шевера. Если стрелу прогиба облегающего шевера увеличить, то при обработке на колесах образуются зубья бочкообразной формы ( фиг.

Бочкообразные зубья уменьшаются ( по толщине) от середины к торцам колеса на 0 01 — 0 03 мм. Колеса — с бочкообразными зубьями менее чувствительны к перекосу осей передачи, обеспечивают положение пятна касания посередине зуба, способствуют уменьшению шума передачи и других недостатков.

Колеса с бочкообразными зубьями могут быть обработаны и обычными шеверами, но на станках со специальным устройством.

При заводских испытаниях рессор обычно ограничиваются определением стрелы прогиба рессоры при заданной рабочей нагрузке.

На рис. 3 — 5 приведены данные для определения стрелы прогиба, напряжений в срединной поверхности и напряжений изгиба для квадратной пластинки по результатам уточненного решения ; на рис. 4 — 5 обозначено: А — угол пластинки; С — центр.

Необходимо отметить, что вышеприведенные значения коэффициента J3 для определения стрелы прогиба балок имеют ограниченное применение, ибо они дают ответ лишь для Двух крайних случаев закрепления концов балок-свободного и защемленного. Каркасы котлоагрегатов представляют собой рамную систему с упругими заделками ригеля ( горизонтальной балки) в узлах. При этом углы в 90 сохраняются между осями стержней, сходящимися в узле.

Страницы: 1 2

В качестве примера, возьмем металлическую балку на двух опорах. Запишем для нее формулу для вычисления прогиба, посчитаем его численное значение. И также в конце этой статьи дам ссылки на другие полезные статьи с примерами определения прогибов для различных расчетных схем.

Расчет на жесткость

Алгоритм исчисления:

В формуле обозначены:

  • M – max момент, возникающий в брусе;
  • Wn,min – момент сопротивления сечения (табличный показатель);
  • Ry – сопротивление на изгиб (расчётный показатель);
  • γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

  • рабочий план объекта;
  • определение характеристик балки, характер сечения;
  • определение max нагрузки, воздействующей на брус;
  • оценка точки max прогиба;
  • проверка прочности max изгибающего момента.

Нагрузка собственного веса ↑

Чтобы определить в случае необходимости вес двутавровой балки пользуются специальными таблицами, где расписаны ее характеристики, к примеру, габариты, марка стали и т. д. В таблице представлена теоретическая масса 1 м профиля.

балка двутавровая размеры и вес (ГОСТ 8239-89)

Пример расчета двутавра ↑

Предположим необходимо рассчитать вес двутавра № 12 длиной в 3 метра. Согласно таблице условная масса погонного метра данного профиля равна 11,50 кг. Если перемножить полученные значения, то получим величину общей массы – 34,5 кг.

Точнее значение веса сварной металлоконструкции можно посчитать, используя специальные онлайн калькуляторы, один из которых предоставлен на нашем сайте в рубрике “Калькуляторы”.

В калькуляторе выбирают соответствующий номер двутавра и вводят необходимый метраж. Как видите, полученное значение больше рассчитанного нами на 0,12 кг.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.

При применении соответствующих коэффициентов, придерживаются следующего:

  • балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;
  • балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;
  • нагрузка консольного типа;
  • воздействие комплексной нагрузки.

Основы вычислений

Для начала следует понять, что именно требуется рассчитать. Дело в том, что деревянный брус или доска балки под нагрузкой способно изогнуться до определенного предела – эта величина называется пределом прочности – и при дальнейшем увеличении нагрузки сломаться.

Под действием нагрузки изогнувшаяся балка может также выскользнуть из креплений. Чтобы избежать этого или хотя бы снизить риск такой неприятности, деревянные балки стараются заделать в кладку дома или прикрепить с помощью кронштейнов, уголков и других видов деталей к деревянной стене дома.

Используют также врубку балки в венец стены. Все такие виды фиксации считаются жесткой заделкой.

Вот так примерно выглядит расчетная схема для однопролетной балки, то есть изделие, у которого закреплены только концы. Здесь L – пролет балки, расстояние между опорными точками, Q – распределенная нагрузка, f – величина прогиба.

Основой для расчета предельно допустимого прогиба, как и источником других данных о работе деревянных конструкций, является СП 64.13330.2011. Согласно этому документу, предельный прогиб балки для межэтажных перекрытий не должен превышать 1/250 часть длины пролета.

То есть для балки с длиной 6 м допустимый прогиб составит 24 мм. Если же брать более строгие значения (для штукатурки на потолке и требующих строгой плоскости пола второго этажа напольных покрытий, например, плитки) – 1/350, допустимый прогиб уменьшается до 17 мм.

В целом для вычислений используют формулу f=L/350, при этом длину пролета указывают в миллиметрах.

Таблица 1.1. Допустимый прогиб деревянных конструкций.

Соответственно, при расчете балки на прочность в онлайн-калькуляторе или вручную следует уменьшать сечение только до тех пределов прогиба, которые меньше вычисленного значения.

На иллюстрации выше показана расчетная схема для распределенной нагрузки, то есть такой, которая равномерно распределяется по всей балке. Обычно в жилых помещениях используется именно эта схема.

Однако при размещении в комнате мебели или оборудования большого веса, особенно не возле стены (на которую опирается край балки), а на некотором удалении от нее, иногда бывает разумнее использовать схему расчета для сосредоточенной нагрузки.

Вот так примерно создается сосредоточенная нагрузка на балку.

Таблица 1.2. Схемы расчета деревянных балок с одной сосредоточенной нагрузкой.

Здесь и далее Е – модуль упругости древесины Е=100 000 кгс/м2), I – осевой момент инерции балки.

Таблица 1.3. Схемы расчета деревянных балок с двумя сосредоточенными нагрузками.

Таблица 1.4. Расчет балки с двусторонним жестким защемлением при равномерно-распределенной нагрузке.

В зависимости от того, куда именно приложены нагрузки и в каком количестве, используется расчетная схема соответствующего типа.

Для бруса, защемленного в стене только одним концом (консольное крепление), используются другие формулы расчета деревянной балки на прочность. Обычно такие вычисления нужны при проектировании навесов на деревянных балках-опорах, больших вылетов крыши и других подобных случаях.

Таблица 1.5. Расчет консольной балки при одной сосредоточенной нагрузке.

Таблица 1.6. Расчет консольной балки при одной неравномерно-распределенной нагрузке.

Таблица 1.7. Расчет консольной балки при одной равномерно-распределенной нагрузке.

Формулы кажутся громоздкими и сложными, но фактически обычному пользователю при расчете деревянных балок перекрытия важно просто представлять себе характер распределения действующих на балку сил и понимать – чтобы соблюсти условия прочности, необходимо правильно выбрать схему приложения нагрузок.

Формулы для расчета прогиба балки

Расчет прогиба консольной балки

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно.

Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений.

Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео: 

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

Где:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;
  • временная нагрузка;
  • нагрузка от перегородок на перекрытие.

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице.

При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала.

Эти данные следует подставить в несколько простых формул.

Расчет прогиба балки методом начальных параметров

Расчет прогиба консольной балки

В этой статье будут рассмотрены основные нюансы расчета прогибов, методом начальных параметров, на примере консольной балки, работающей на изгиб. А также рассмотрим пример, где с помощью универсального уравнения, определим прогиб балки и угол поворота.

Теория по методу начальных параметров

Возьмем консольную балку, нагруженную сосредоточенной силой, моментом, а также распределенной нагрузкой. Таким образом, зададимся такой расчетной схемой, где присутствуют все виды нагрузок, тем самым, охватим всю теоретическую часть по максимуму. Обозначим опорные реакции в жесткой заделке, возникающие под действием внешней нагрузки:

Выбор базы и обозначение системы координат

Для балки выберем базу с левой стороны, от которой будем отсчитывать расстояния до приложения сил, моментов, начала и конца распределенной нагрузки. Базу обозначим буквой O и проведем через нее систему координат:

Базу традиционно выбирают с левого краю балки, но можно выбрать ее и справа. Тогда в уравнении будут противоположные знаки, это может пригодиться в некоторых случаях, упростит  немного решение. Понимание, когда принимать базу слева или справа, придет с опытом решения задач на метод начальных параметров.

Универсальное уравнение прогибов для балки

После введения базы, системы координат и обозначении расстояний а, б, в, г записываем универсальную формулу, с помощью которой, будем рассчитывать прогиб балки (вертикальное перемещение сечения K, находящегося на свободном торце балки): Теперь поговорим об этой формуле, проанализируем так сказать:

  • E – модуль упругости;
  • I – момент инерции;
  • – прогиб сечения K;
  • VO – прогиб сечения O;
  • θO – угол поворота сечения О.

Не буду приводить вывод этой формулы, не хочу отпугивать читателей, продвинутые студенты могут ознакомиться с выводом самостоятельно в учебнике по сопромату. Я только расскажу об основных закономерностях этого уравнения и как записать его для любой балки постоянного сечения.

Итак, изучаем эту формулу с лева направо. В левой части уравнения обознается искомый прогиб, в нашем случае , который дополнительно умножается на жесткость балки — EI:В уравнении всегда учитывается прогиб сечения балки, совпадающего с нашей базой EIVO:

Также всегда учитывается угол поворота сечения совпадающего с выбранной базой. Причем, произведение EIθO всегда умножается на расстояние от базы до сечения, прогиб которого рассчитывается, в нашем примере — это расстояние г.

Следующие компоненты этого уравнения учитывают всю нагрузку находящуюся слева от рассматриваемого сечения. В скобках расстояния от базы до сечения отнимаются расстояния от базы до соответствующей силы или момента, начала или конца распределенной нагрузки.

Скобка, в случае с сосредоточенными силами, возводится в 3 степень и делится на 6. Если сила смотрит вверх, то считаем ее положительной, если вниз, то в уравнении она записывается с минусом:

В случае с моментами, скоба возводится во 2 степень и делится на 2. Знак у момента будет положительный, когда он направлен почасовой стрелке и отрицательным, соответственно, когда против часовой стрелки.

Учет распределенной нагрузки

Теперь поговорим о распределенной нагрузке. Как уже говорилось, в уравнении метода начальных параметров должно учитываться начало и конец распределенной нагрузки, но конец ее совпадает с сечением, прогиб которого мы хотим вычислить, поэтому в уравнение попадает только ее начало.

Причем важно, даже если бы в этом сечении была бы сила или момент, их бы так же не учитывали. Нас интересует все, что находится слева от рассматриваемого сечения.

Для распределенной нагрузки скобочка возводится в 4 степень и делится на 24. Правило знаков такое же, как и для сосредоточенных сил:

Граничные условия

Чтобы решить уравнение нам понадобятся еще кое-какие данные. С первого взгляда в уравнении у нас наблюдается три неизвестных: , VO и θO. Но кое-что мы можем почерпнуть из самой схемы.

Мы знаем, в жесткой заделке не может быть никаких прогибов, и ни каких поворотов, то есть VO=0 и θO=0, это и есть так называемые начальные параметры или их еще называют граничными условиями.

Теперь, если бы у нас была реальная задача, мы бы подставили все численные данные и нашли перемещение сечения K.

Если бы балка была закреплена с помощью шарнирно подвижной и неподвижной опоры, тогда мы бы приняли прогибы в опорах равными нулю, но угол поворота в опорах был бы уже отличен от нуля. Более подробно об этом рассказано в другой моей статье, посвященной методу начальных параметров на примере балки на двух опорах.

Чуть не забыл про еще одну величину, которую часто требуется определять методом начальных параметров.  Как известно, при изгибе, поперечные сечения балок помимо того, что перемещаются вертикально (прогибаются) так еще и поворачиваются на какой-то угол. Углы поворота и прогибы поперечных сечений связаны дифференциальной зависимостью.

Если продифференцировать уравнение, которое мы получили для прогиба поперечного сечения K, то получим уравнение угла поворота этого сечения:

Пример расчета прогиба балки

Для закрепления пройденного материала, предлагаю рассмотреть пример с заданными численными значениями всех параметров балки и нагрузок. Возьмем также консольную балку, которая жестко закреплена с правого торца.

Будем считать, что балка изготовлена из стали (модуль упругости E = 2·105 МПа), в сечении у нее двутавр №16 (момент инерции по сортаменту I = 873 см4). Рассчитывать будем прогиб свободного торца, находящегося слева.

Подготовительный этап

Проводим подготовительные действия, перед расчетом прогиба: помечаем базу O, с левого торца балки, проводим координатные оси и показываем реакции, возникающие в заделке, под действием заданной нагрузки:

В методе начальных параметров, есть еще одна особенность, которая касается распределенной нагрузки. Если на балку действует распределенная нагрузка, то ее конец, обязательно должен находиться на краю балки (в точке наиболее удаленной от заданной базы). Только в таком случае, рассматриваемый метод будет работать.

В нашем примере, нагрузка, как видно, начинается на расстоянии 2 м. от базы и заканчивается на 4 м. В таком случае, нагрузка продлевается до конца балки, а искусственное продление компенсируется дополнительной, противоположно-направленной нагрузкой.

Тем самым, в расчете прогибов будет уже учитываться 2 распределенные нагрузки:

Расчет прогиба

Записываем граничные условия для заданной расчетной схемы:

VA = 0 при x = 6м

θA = 0 при x = 6м

Напомню, что нас, в этом примере, интересует прогиб сечения O (VO). Для его нахождения составим уравнение, для сечения A, в которое будет входить искомая величина:

В полученном уравнении, у нас содержится две неизвестные величины: искомый прогиб VO и угол поворота этого сечения — θO:

Таким образом, чтобы решить поставленную задачу, составим дополнительное уравнение, но только теперь, не прогибов, а углов поворотов, для сечения A:Из второго уравнения, найдем угол поворота:После чего, рассчитываем искомый прогиб:

Таким образом, свободный торец такой балки, прогнется практически на 6 см. Данную задачу, можно решить несколько проще, если ввести базу с правого торца. В таком случае, для решения потребовалось бы лишь одно уравнение, однако, оно было бы немного объемнее, т.к. включало реакции в заделке.

Расчет балки на прогиб – формулы, параметры и примеры решения

Расчет прогиба консольной балки

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации. 

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению. 

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Виды балок:

  1. Деревянные – их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

  2. Металлические – такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

  • величина наружных нагрузок, их положение;

  • параметры, характер, нахождение поперечного сечения;

  • продольные величины;

  • материал;

  • число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты. 

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

Расчет на жесткость

Алгоритм исчисления:

В формуле обозначены:

  • M – max момент, возникающий в брусе;

  • Wn,min – момент сопротивления сечения (табличный показатель);

  • Ry – сопротивление на изгиб (расчётный показатель);

  • γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

  • рабочий план объекта;

  • определение характеристик балки, характер сечения;

  • определение max нагрузки, воздействующей на брус;

  • оценка точки max прогиба;

  • проверка прочности max изгибающего момента.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

Здесь обозначены:

  • q – нагрузка равномерно-распределенная;

  • E – гибкость (табличный показатель);

  • l – длина;

  • I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках. 

При применении соответствующих коэффициентов, придерживаются следующего:

  • балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

  • балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

  • нагрузка консольного типа;

  • воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм. 

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

Решение.

Чтобы узнать σ(К), τ(К), σmax, τmax определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

Из этого следует:

Определение прочности по нормальному напряжению:

Определение прочности по касательному напряжению:

Задача решена.

https://www.youtube.com/watch?v=9pGn57f3rvMu0026t=181s

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки. 

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.