Сформулируйте первый закон фарадея

Закон электромагнитной индукции

Сформулируйте первый закон фарадея

> Теория > Закон электромагнитной индукции

Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

История

В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром.

Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении.

Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

  • количества витков в катушке;
  • силы магнита;
  • скорости, с которой магнит погружался в катушку.

Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

Формулирование закона электромагнитной индукции

Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

Явление электромагнитной индукции

Это определение математически выражает формула:

Е = — ΔΦ/ Δt,

где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

Дополнительная информация. Существуют два разных подхода к индукции. Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд.

Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса.

Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

Физический смысл закона электромагнитной индукции формулируется в трех положениях:

  1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
  2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
  3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

Закон электромагнитной индукции

Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

Эдс индукции в проводнике

Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

E = — B x l x v х sin α, где:

  • В – индукция;
  • l – протяженность проводника;
  • v – скорость его движения;
  • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

Законы электролиза

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

Для второго закона электролиза используется запись:

К = 1/F x M/z.

Здесь Fпостоянная Фарадея, которая определяется зарядом 1 моля электронов:

F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

Запишите другое выражение для второго закона Фарадея:

m1/m2 = К1/К2.

Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это 63,5/2, для серебра 108/1, значит:

m1/m2 = 63,5/(2 х 108).

Теория электромагнетизма со времен Фарадея продолжала развиваться. В середине 20-го века для закона индукции была применена формулировка в рамках квантовой теории электромагнитных полей – квантовой электродинамики. Сегодня, благодаря большой технической области использования, она представляет собой одну из наиболее точных физических теорий, проверенных посредством экспериментов.

Закон Фарадея для электролиза: формулы

Сформулируйте первый закон фарадея

Электрический ток, проходящий через растворы электролитов, способствует разложению веществ и дает возможность получать химически чистые материалы. Данный процесс получил наименование электролиза, нашедшего широкое применение в промышленном производстве.

Физические преобразования проводников, находящихся в жидкости, объясняет закон Фарадея для электролиза, на основании которого анод выполняет функцию положительного электрода, а катод – отрицательного.

С помощью него осуществляется очистка металлов от примесей и выполняется нанесение тонких покрытий, защищающих металлические поверхности.

Суть процесса электролиза

Электролизом называются процессы окислительно-восстановительных реакций, протекающие под принудительным воздействием электрического тока. Для его выполнения используется специальная емкость с электролитическим раствором, куда погружаются металлические штыри, соединенные с наружным источником питания.

Электрод, соединенный с полюсом отрицательного значения источника тока, считается катодом. Именно в данном месте частицы электролита восстанавливаются. Другой электрод подключается к плюсовому полюсу и носит название анода.

На этом участке вещество электрода или частицы электролита окисляются. Химические реакции на этом участке происходят по-разному, в зависимости от материала анода и состава электролитического раствора.

Поэтому, как утверждает химия, электроды по отношению к электролиту могут быть инертными или растворимыми.

К категории инертных относятся аноды, изготовленные из материала, не окисляющегося во время электролиза.

В качестве примера можно привести графитовые или платиновые электроды. Растворимыми являются практически все остальные виды металлических анодов, подверженных окислению в ходе электролитической реакции.

Электролитами чаще всего служат различные виды растворов или расплавов, внутри которых происходит хаотичное движение заряженных частиц – ионов. Когда на них воздействует электрический ток, они начинают двигаться в определенном направлении: катионы – к катоду, анионы – к аноду. Попадая на электроды, они теряют свои заряды и оседают на них.

Основы электротехники для начинающих

Таким образом, на катоде и аноде происходит накопление так называемых суммарных продуктов, состоящих из электрически нейтральных веществ. Весь процесс электролиза выполняется под напряжением, подаваемым на электроды.

Данное напряжение Uэл-за является типичным примером разности потенциалов, требующейся для обеспечения нормального течения электролитических реакций.

Чисто теоретически это напряжение принимает вид формулы: Uэл-за = Еа – Ек, в которой Еа и Ек являются потенциалами химических реакций, происходящих на аноде и катоде.

Существует определенная связь между количеством электричества, протекавшего через раствор, и количеством вещества, выделенного в период электролитической реакции. Данное явление было описано английским физиком Фарадеем и оформлено в виде двух законов.

Первый закон Фарадея

Данный закон был выведен ученым экспериментальным путем. Он определяет пропорциональную зависимость между массой вещества, образующегося на электроде и зарядом, проходящим через электролитический раствор.

Эту пропорцию наглядно отображает формула m=k х Q=k х I х t, где k является коэффициентом пропорциональности или электрохимическим эквивалентом, Q – заряд, прошедший через электролит, t – время прохождения заряда, m – масса вещества, образовавшегося на электроде в результате реакции.

Первый закон Фарадея служит для определения количества первичных продуктов, образовавшихся в процессе электролиза на электродах. Масса этого вещества составляет суммарную массу всех ионов, попавших на электрод.

Это подтверждается формулой m=m0 х N = m0 х Qq0 = m0q0 х I х t, в которой m0 и q0 соответственно являются массой и зарядом единичного иона.

N=Qq0 – определяет количество ионов, попавших на электрод за время прохождения заряда Q через раствор электролита.

Следовательно, величина электрохимического эквивалента k представляет собой соотношение массы иона m0 используемого вещества и заряда q0 этого иона.

Известно, что величина заряда иона составляет произведение валентности n этого вещества и элементарного заряда е, то есть, q0 = n х e. Исходя из этого, электрохимический эквивалент k будет выглядеть следующим образом: k = m0q0 = m0 х NAn х e х NA = 1F х μn.

В этой формуле NA является постоянной Авогадро, μ – молярной массой данного вещества. F = e х NA является постоянной Фарадея и составляет 96485 Кл/моль.

Числовое значение данной величины равняется заряду, который должен быть пропущен через раствор электролита, для того чтобы на электроде выделился 1 моль вещества с одинаковой валентностью. Рассматриваемый закон Фарадея для электролиза примет вид еще одной формулы: m = 1F х μn х I х t.

Второй закон Фарадея

Следующий закон ученого Фарадея описывает, как электрохимический эквивалент будет зависеть от атомной массы вещества и его валентности.

У этого коэффициента будет прямая пропорциональная зависимость с атомным весом и обратно пропорциональная – с валентностью вещества.

С введением данной величины, второй закон Фарадея формулируется как пропорция электрохимических эквивалентов вещества и собственных химических эквивалентов этих веществ.

Если значения электрохимических эквивалентов взять за k1, k2, k3…kn, а химические эквиваленты принять за х1, х2, х3…xn, то k1/x1 = k2/x2 = k3/x3…kn/xn.

Данное соотношение является постоянной величиной, одинаковой для любых используемых веществ: с = k/x и составляет 0,01036 мг-экв/к.

Именно такое количество вещества в миллиграмм-эквивалентах выделяется на электродах за период прохождения в электролите электрического заряда, равного одному кулону.

Следовательно, второй закон Фарадея можно представить в виде формулы: k = cx. Если данной выражение использовать вместе с первым законом Фарадея, то в результате получится следующее выражение: m = kq = cxq = cxlt.

Здесь категория с представляет собой универсальную постоянную, в размере 0,00001036 г-экв/к.

Подобная формулировка дает возможность понять, что одни и те же токи, пропущенные через одинаковый промежуток времени в двух различных электролитах, выделят из них вещества с соблюдением рассмотренного химического эквивалента.

https://www.youtube.com/watch?v=dbbfYBmaTqsu0026t=1768s

Поскольку x = A/n, то масса выделяемого вещества будет выглядеть как m = cA/nlt, с соблюдением прямой пропорции с атомным весом и обратной пропорции с валентностью.

Закон Фарадея для электролиза – формулы, уравнения и задачи

Сформулируйте первый закон фарадея

Прежде чем говорить об уравнении Фарадея, следует изучить свойства веществ, которые называют электролитами. Определение в химии для них дается простое: это любые соединения, раствор или расплав которых способен проводить электрический ток.

Для существования направленного движения зарядов внутри какой-либо субстанции необходимо выполнение двух обязательных условий:

  1. Наличие пространственной разницы потенциалов электрического поля внутри субстанции. Эта разница может создаваться за счет электрических батарей, например, внутри аккумуляторов. Ток должен быть постоянным, а не переменным.
  2. Существования свободных заряженных частиц. Если раствор или расплав являются нейтральными, то они образованы как положительными (катионы), так и отрицательными (анионы) частицами. Важным моментом является их способность свободно перемещаться внутри субстанции при приложении к ней некоторой разницы потенциалов.

К электролитам относятся растворы практически всех растворимых солей (NaCl, K2SO4), кислот (HCl, H2SO4) и щелочей (Mg (OH)2, KOH). Любопытным является случай с H2O.

Дело в том, что дистиллированная (абсолютно чистая) вода не проводит электричество, однако, уже незначительное количество примесей в ней делает ее хорошим проводником. Поскольку она также является замечательным растворителем благодаря полярному строению ее молекул, то часто применяется для приготовления растворов электролитов.

Процесс электролиза

Чтобы ясно понять суть законов Фарадея, следует разобраться с процессом, для которого они применяются.

Электролизом принято называть разложение соединений в их расплавах или растворах под действием проходящего электрического тока.

Поскольку речь идет об электрохимическом процессе, то в его результате происходит два типа реакций: окисление и восстановление. Для их существования необходимо наличие двух электродов: катода и анода.

Два электрода

Если к отрицательной клемме электрической батареи присоединить электрод, то называться он будет катодом. Второй электрод, который подсоединяется к положительному полюсу батареи, — это анод. Оба слова имеют древнегреческие корни:

  1. Catha означает «вниз». Здесь имеется в виду движение электронов в сторону уменьшения свободной энергии системы.
  2. Anas — это «вверх».

Часто школьники и студенты путаются в знаке заряда этих электродов. Чтобы исключить ошибки, существует простой метод запоминания: катионы или положительные ионы вещества всегда движутся к катоду, то есть он является отрицательным электродом. В свою очередь, анионы или отрицательные ионы направляются под действием электрического поля к аниону, поэтому он является положительным.

Имеется еще один способ определения знака электродов. Поскольку на каждом из них проходит один из двух противоположных химических процессов (окисление или восстановление), то этот факт можно использовать таким образом:

  1. «Анод» и «окисление» — оба слова начинаются с гласных букв. Поскольку этот процесс сопровождается отдачей электронов электроду, значит, последний является положительным.
  2. «Катод» и «восстановление» — оба слова начинаются на букву согласную. Так как процесс восстановления сопровождается присоединением к иону электронов, значит, электрод должен их отдать, то есть он является носителем отрицательного заряда.

Окислительно-восстановительные реакции

Именно благодаря им происходит выделение или растворение веществ на электродах. Реакция окисления часто приводит к образованию пузырьков газов на аноде. Процессы же восстановления на катоде сопровождаются присоединением к катионам электронов и образованием твердых веществ из растворов и расплавов. Следует для ясности привести несколько примеров:

  1. Водный раствор поваренной соли (NaCl). Если через него пропускать ток с использованием углеродных электродов, то к аноду (+) будут идти анионы Cl-, на нем они будут окисляться до атомарного хлора, который будет образовывать пузырьки газа ядовитого Cl2. Катионы Na+ будут двигаться и оседать на электроде-катоде (-). Получая от него недостающие электроны для строительства внешней оболочки, будут образовываться в результате реакции восстановления атомы щелочного металла Na.
  2. Водный раствор медного купороса CuSO4. Здесь тип происходящих реакций будет зависеть от материала, из которого изготовлен электрод-анод. Реакция восстановления на катоде будет приводить к выделению меди на нем, однако, на аноде возможны разные варианты. Если этот электрод является платиновым, то на нем происходит выделение кислорода и образование H+ за счет окисления молекул H2O, а не анионов (SO4)2-. Если же анод будет медным, то происходит его собственное окисление и растворение.

Тип конкретной химической реакции на электродах определяется степенью «легкости» ее осуществления с энергетической точки зрения.

Применение в промышленности

Практически все активные химические элементы не содержатся в природе в чистом виде. Ввиду этого применение электролиза является достаточно полезным методом для получения многих металлов и газов:

  • производство чистых алюминия, натрия, калия и магния;
  • получение концентрированных растворов щелочей и кислот;
  • производство водорода, например, с помощью разложения воды;
  • анодирование — покрытие изделий тонкой пленкой различных соединений для их защиты от коррозии.

Законы Майкла Фарадея

В результате проведения многих исследований в 1834 году английский физикохимик Майкл Фарадей (в его честь названа единица измерения электрической емкости — фарада) вывел два закона, которые способны количественно описать процесс электролиза. Хотя сам факт разложения соединений под действием проходящего электричества через их растворы был открыт задолго до Фарадея. В 1800 году другой английский ученый Уильям Николсон установил экспериментально этот факт.

Заслуги Фарадея в исследовании электролиза огромны. Он ввел в физикохимию основные термины, которые до сих пор используются для описания этого процесса. Два закона ученого в современной формулировке представляются следующим образом:

  1. Масса вещества, которая оседает на электроде в процессе электролиза, прямо пропорциональна количеству электричества, проходящему через рассматриваемый электрод. Под количеством электричества понимается заряд, который в системе СИ измеряется в кулонах.
  2. Для постоянного количества электричества масса химического соединения, которая образуется в ходе электролиза на электроде, является прямо пропорциональной величиной эквиваленту этого вещества. Под эквивалентом полагается отношение молярной массы к количеству молей электронов, участвующих в реакции. Это число совпадает с валентностью элемента, например, для Al3+ оно равно 3, а для H+ составляет 1.

Математическая формула

Оба закона получены Фарадеем экспериментальным путем. Их словесные формулировки можно легко объединить и перевести на математический язык. Общее уравнение, которое удобно использовать при решении любых практических задач, принимает следующую форму:

m = (Q/F)*(M/z).

Здесь m — масса образующегося вещества на электроде, Q — заряд, прошедший через электрод в процессе реакции, F — коэффициент пропорциональности, который называют постоянной Фарадея, M — молярная масса вещества, участвующего в химической реакции, z — его валентность (безразмерное число).

Первый множитель этого уравнения математически отражает сформулированный первый закон Фарадея, соответственно, второй множитель является выражением пропорциональности массы вещества его эквиваленту (M/z).

Эту формулу можно преобразовать, если вспомнить из курса общей физики, что заряд вычисляется по формуле:

Q = I*t.

Здесь I — электрический ток в амперах, t — время его прохождения через электролит. Подставив это выражение в математический закон Фарадея, и преобразуя его, можно получить следующие формулы:

m = kIt = (I*t/F)*(M/z) ==>

n*z*F = I*t.

Буквой n здесь обозначено количество выделившегося вещества на электроде в молях (n = m/M).

Значение постоянной F

Численное значение постоянной Фарадея составляет приблизительно 96500 Кл/моль. Физический смысл этой величины заключается в том, что она говорит, какое количество электричества необходимо пропустить через раствор, чтобы выделилось на электроде 1 моль одновалентного вещества.

Величина F тесно связана с постоянной Авогадро NA и с элементарным зарядом электрона e следующим выражением:

F = NA*e.

Эта формула в XIX веке была использована учеными для точного определения числа NA. Сам Фарадей определил постоянную, носящую его фамилию, благодаря изучению процесса электролиза серебряного раствора.

В настоящее время проводятся эксперименты с целью точного определения величины F (а значит, NA), чтобы ее использовать для переопределения единицы измерения массы — килограмма.

Пример решения задачи

Рассмотрим электролиз хлорида кальция в водном растворе. Химическая формула соединения CaCl2. В воде оно хорошо растворяется с образованием ионов Ca2+ и Cl-. Пусть через этот раствор пропустили постоянный ток 5 ампер в течение 2 часов. Необходимо определить массы газообразного хлора и твердого кальция, которые выделятся на аноде и катоде, соответственно.

Известные данные задачи позволяют без проведения промежуточных вычислений провести расчет по современной формуле Фарадея:

  1. Для анода получается: 2*Cl- – 2*e = Cl2. m (Cl2) = (I*t/F)*(M/z) = (5*7200/96500)*(0,0355/1) = 13,2 грамма.
  2. Для катода получается: Ca2+ + 2*e = Ca. m (Ca) = (I*t/F)*(M/z) = (5*7200/96500)*(0,040/2) = 7,5 грамма.

Для проведения расчетов использовались молярные массы химических элементов Ca и Cl из таблицы Д. И. Менделеева.

Таким образом, законы Майкла Фарадея являются универсальными для их практического применения к любым химическим веществам, которые участвуют в процессах электролиза. Они позволяют количественно выразить результаты реакций на электродах.

Закон электромагнитной индукции – формулы, определение, примеры

Сформулируйте первый закон фарадея

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный потокФ — магнитный поток [Вб]B — магнитная индукция [Тл]S — площадь пронизываемой поверхности [м2]n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Ученики Skysmart не боятся сложных понятий по физике и чувствуют себя уверенее на контрольных в школе. А еще — не могут оторваться от домашки: захватывает не хуже, чем тик-ток.

Запишите ребенка на вводное занятие: покажем, как все проходит на интерактивной платформе и вдохновим на учебу!

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Почему возникает индукционный ток?Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон ФарадеяƐi — ЭДС индукции [В]ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витковƐi — ЭДС индукции [В]ΔФ/Δt — скорость изменения магнитного потока [Вб/с]N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контураƐi — ЭДС индукции [В]I — сила индукционного тока [А]R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводникаƐi — ЭДС индукции [В]B — магнитная индукция [Тл]v — скорость проводника [м/с]l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Закон Фарадея: формула для электромагнитной индукции

Сформулируйте первый закон фарадея

Электрический ток, проходящий через растворы электролитов, способствует разложению веществ и дает возможность получать химически чистые материалы. Данный процесс получил наименование электролиза, нашедшего широкое применение в промышленном производстве.

Физические преобразования проводников, находящихся в жидкости, объясняет закон Фарадея для электролиза, на основании которого анод выполняет функцию положительного электрода, а катод – отрицательного.

С помощью него осуществляется очистка металлов от примесей и выполняется нанесение тонких покрытий, защищающих металлические поверхности.

История открытия

Явление электромагнитной индукции было открыто сразу двумя учеными. Это были Майкл Фарадей и Джозеф Генри, сделавшие свое открытие в 1831 году.

Публикация Фарадеем результатов проведенных экспериментов была сделана раньше его коллеги, поэтому индукцию связывают именно с этим ученым. В дальнейшем это понятие было включено в систему СГС.

Для демонстрации явления использовался железный тор, напоминающий конфигурацию современного трансформатора. Противоположные стороны его были обмотаны двумя проводниками с целью использования электромагнитных свойств.

К одному из проводов подключался ток, вызывающий своеобразную электрическую волну при прохождении сквозь тор, и некоторый электрический всплеск с противоположной стороны. Наличие тока было зафиксировано гальванометром. Точно такой же всплеск электричества наблюдался и в момент отключения провода.

Постепенно были обнаружены и другие формы проявления электромагнитной индукции. Кратковременное возникновение тока наблюдалось во время генерации его на медном диске, вращающемся возле магнита. На самом диске был установлен скользящий электропровод.

Когда обе катушки находятся в неподвижном положении относительно друг друга, никаких явлений не происходит. Когда небольшая катушка начинает двигаться, то есть выходить из большой катушки или входить в нее, наступает изменение магнитного потока. В результате, в большой катушке наблюдается появление электродвижущей силы.

Открытие Фарадея доработал другой ученый – Максвелл, который обосновал его математически, отображая данное физическое явление дифференциальными уравнениями. Еще одному ученому-физику – Ленцу удалось определить направление электротока и ЭДС, полученных под действием электромагнитной индукции.

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея.

По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е.

индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Warning

: Use of undefined constant rand — assumed ‘rand’ (this will throw an Error in a future version of PHP) in
/var/www/www-root/data/www/sprint-olympic.ru/wp-content/plugins/insert-php/includes/shortcodes/shortcode-universal.php(52) : eval()’d code on line

10

Напряжение электрического тока – виды, формула, единица измерения

Электролиты

Определение 1
Явление выделения электрическим током химических составных частей проводника при прохождении тока называется электролизом.

Электролиз может протекать не во всех проводниках. К числу проводников, в которых электролиз не протекает, относят металлы, уголь и другие соединения (Это проводники первого рода). Проводники, в которых электролиз возможен, называют проводниками второго рода или электролитами. К электролитам относят большое количество водных растворов кислот, солей, некоторые жидкие и твердые соединения.

Явление электролиза часто сопровождается химическими реакциями (вторичные реакции), которые не связаны с прохождением тока.

В ходе электролиза на отрицательном полюсе (катоде) всегда выделяются металлы и водород, на положительном полюсе (аноде) — остаток химического соединения. Составные части электролита выделяются только на электродах.

Явление выделения составных частей электролита на электродах при прохождении электрического тока было исследовано М. Фарадеем.

Готовые работы на аналогичную тему

  • Курсовая работа Электролиты, закон Фарадея 490 руб.
  • Реферат Электролиты, закон Фарадея 250 руб.
  • Контрольная работа Электролиты, закон Фарадея 210 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Законы электролиза Фарадея не стоит путать с законом электромагнитной индукции Фарадея, рассматривающим электрический контур и силы в нём. В этом законе говорится о зависимости ЭДС от скорости изменения магнитного потока.

Явление электролиза отражает тот факт, что молекулы растворенного вещества в электролите существуют как две части: ион с положительным знаком и ион с отрицательным знаком. Под воздействием внешнего электрического поля эти ионы движутся: положительные ионы в сторону катода, отрицательные ионы в сторону анода.

Таким образом, когда отрицательный ион достигнет анода, то он отдает свой заряд электроду, что ведёт к изменению его заряда. Следовательно, некоторое количество электронов проходят по внешней цепи. Ион становится нейтральным и выделяется на аноде, как атом или молекула.

Положительный ион забирает у катода некоторое количество электронов (столько, сколько ему требуется для нейтрализации), что порождает его выделение на катоде.

Замечание 1

Ионы, знак заряда при которых отрицательный, выделяются на аноде, они были названы Фарадеем анионами, а положительно заряженные ионы получили название катионов.

Нужна консультация преподавателя в этой предметной области? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Применение явления

Значение закона Фарадея трудно недооценить, понимая, в каких целях он используется на практике. Вся электрическая промышленность построена на реализации открытия учёного. Одним из устройств использующего принцип возникновения ЭДС за счёт движения замкнутого проводника в магнитном поле является электрический генератор.

Его работа заключается в том, что если постоянный магнит перемещать относительно контура, то возникнет электродвижущая сила. Соответственно подключив проводник к нагрузке, можно получить ток. А это значит, что механическая энергия превратится в электрическую. При этом различают два принципиально разных механизма работы:

  1. Индуцированный — вращение магнита, вокруг не изменяющего своё положение проводника. В этом случае электрическое поле двигает заряды через проводник.
  2. Двигательный — магнит неподвижен, а проводник вращается. Появляется сила Лоренца, и магнитное поле толкает заряды.

Второе, но не менее важное устройство, электродвигатель. По сути, это генератор работающий «задом наперёд»

На заряд действует магнитная сила, вращающая диск в обратном направлении, определить которое можно по правилу левой руки. Если будут потери небольшие, например, связанные с трением или выделением тепла, то подключённый диск будет вращаться с такой скоростью, чтобы отношение dF / dt сравнялось с разностью потенциалов вызывающего ток.

На использовании ЭДС построена работа и трансформатора. Проходящий по первичным виткам переменный электрический ток приводит к возникновению магнитного поля. Последнее и наводит во вторичной обмотке электродвижущую силу. Если только концы катушки подключить к нагрузке, то через неё сразу же потечёт ток.

Опыт Фарадея

Вначале XIX века пришёлся бум на открытия в области электричества и магнетизма. Установленные в это время законы служат базисами и в современных исследованиях. Так, одним из важных открытий стала взаимосвязь между магнитными и электрическими полями. Фарадею удалось сделать то, что не получилось у Эрстеда и Ампера. Он смог превратить магнетизм в электричество.

Для открытия своего закона учёному понадобилось подготовить:

  • магнит;
  • две проволочные катушки;
  • гальванометр;
  • источник тока.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.