Схема работы теплового насоса

Содержание

Принцип действия тепловых насосов

Схема работы теплового насоса

Имея в своем доме холодильники и кондиционеры, мало кто знает — принцип работы теплового насоса реализован именно в них.

Около 80% мощности, которую дает тепловой насос, приходится на тепло окружающей среды в виде рассеянного солнечного излучения. Именно его насос просто «перекачивает» с улицы в дом. Работа теплового насоса подобна принципу работы холодильника, вот только направление переноса тепла иное.

Проще говоря…

Чтобы охладить бутылку минеральной воды, Вы ее ставите в холодильник. Холодильник должен «забрать» у бутылки часть тепловой энергии и, согласно закону сохранения энергии, ее куда-то переместить, отдать.

Холодильник переносит теплоту на радиатор, обычно расположенный на задней его стенке. При этом радиатор нагревается, отдавая свое тепло в помещение. Фактически он отапливает помещение.

Это особенно заметно в маленьких минимаркетах летом, при нескольких включенных холодильниках в помещении.

Предлагаем пофантазировать. Предположим, что мы будем постоянно подкладывать теплые предметы в холодильник, а он будет, охлаждая их, нагревать воздух в помещении. Пойдем на «крайности»… Расположим холодильник в оконном проеме открытой дверкой «морозилки» наружу.

Радиатор холодильника будет находиться в помещении. В процессе работы холодильник будет охлаждать воздух на улице, перенося в помещение «забранную» теплоту. Так и работает тепловой насос, забирая рассредоточенное тепло у окружающей среды и перенося его в помещение.

Тепловой насос. Внешний воздушно-водяной контур

Где насос берет тепло?

Принцип работы теплового насоса базируется на «эксплуатации» естественных низкопотенциальных источников тепла из окружающей среды.

Распределение солнечной энергии

Ими могут быть:

  • просто наружный воздух;
  • тепло водоемов (озер, морей, рек);
  • тепло грунта, грунтовых вод (термальных и артезианских).

Геотермальный тепловой насос. Принцип работы

Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур — система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Приблизительный расчет теплопроизводительности установки

В течении часа по внешнему коллектору через насос протекает до 2,5-3 м3 теплоносителя, который земля способна нагреть на ∆t = 5-7 °C.

Для расчета тепловой мощности такого контура воспользуйтесь формулой:

[pmath size=14]Q = (T_1 — T_2)*V_тепл[/pmath]

где:

Как работает тепловой насос?

Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод — внешний контур не закольцованный, внутренняя система отопления — водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • тепловой насос воздух-воздух (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).

Схема и принцип действия теплового насоса

Преимущества и достоинства тепловых насосов

Экономичная эффективность. Принцип работы теплового насоса базируется не на производстве, а на переносе (транспортировке) тепловой энергии, то можно утверждать, что его КПД больше единицы. Что за чушь? — скажете Вы.В теме тепловых насосов фигурирует величина — коэффициент преобразования (трансформации) тепла (КПТ).

Именно по этому параметру сравнивают между собой агрегаты подобного типа. Его физический смысл – показать отношение полученного количества теплоты к величине, затраченной для этого, энергии.

К примеру, при КПТ = 4,8 затраченная насосом электроэнергия в 1кВт позволит получить с его помощью 4,8 кВт тепла безвозмездно, то есть даром от природы.

Универсальная повсеместность применения. Даже при отсутствии доступных линий электропередач работа компрессора теплового насоса может быть обеспечена дизельным приводом. А «природное» тепло есть в любом уголке планеты — тепловой насос «голодным» не останется.

Типичный компрессор холодильника- теплового насоса

Экологическая чистота использования. В тепловом насосе отсутствуют продукты горения, а его малое энергопотребление меньше «эксплуатирует» электростанции, косвенно снижая вредные выбросы от них. Хладагент, используемый в тепловых насосах, озонобезопасен и не содержит хлоруглеродов.

Внешний модуль теплового насоса «воздух-воздух»

Двунаправленный режим работы. Тепловой насос может в зимнее время обогревать помещение, а в летнее — охлаждать. Отобранную из помещения «теплоту» можно использовать эффективно, например, подогревать воду в бассейне или в системе ГВС.

Варианты режима работы теплового насоса

Безопасность эксплуатации. В принципе работы теплового насоса Вы не рассмотрите опасных процессов. Отсутствие открытого огня и вредных опасных для человека выделений, низкая температура теплоносителей делают тепловой насос «безобидным», но полезным бытовым прибором.

Полная автоматизация процесса отопления помещения.

Внешний воздушный контур теплового насоса

Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м2) — иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

Тепловой насос для отопления дома, принцип работы и виды

Схема работы теплового насоса

Тепловой насос — это альтернативный источник создания тепла для обогрева дома. Данное устройство преобразует низкопотенциальную тепловую энергию источника (земли, воды, воздуха) в высокотемпературное тепло. Тепловые насосы, преобразующие энергию земли являются наиболее распространенными.

Теорию теплового насоса разработал в 1852 году лорд Кельвин. В 1866 на основе данных изысканий Иоахимстале Петер фон Риттингер создал устройство, и использовал его для повышения эффективности выпаривания соли.

 В современной форме тепловой насос создал американец Роберт Уэббер в середине ХХ века. Он начал использовать тепловую энергию земли для отопления дома. Для этого под грунтом укладывались медные трубы, где циркулировал забирающий при испарении земное тепло фреон.

Тепло это газ отдавал в доме, и, конденсируясь, опять шел на циркуляцию в землю.

В данном обзоре рассмотрены основные виды систем с использованием теплового насоса и принцип их работы.

Принцип действия тепловых насосов схож с работой холодильных машин, где производиться получение холода путем отбора теплоты из какого-либо объема испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду. В тепловом насосе же процессы происходят в обратном порядке — в этом и заключается основное различие.

Устройство теплового насоса:

Тепловой насос состоит из двух теплообменников — испарителя и конденсатора. В испарителе с помощью испаряющегося хладагента поддерживается температура ниже температуры того тела (грунт, вода или атмосферный воздух), от которого требуется отобрать тепло. В конденсаторе поддерживается температура выше температуры другого тела (система отопления дома), которому тепло передается.
Разные уровни температур в первом и втором теплообменниках обеспечиваются с помощью циркулирующего между ними хладагента, способного изменяться от жидкого к газообразному состоянию и обратно при различных температурах.

Тепловым насосам для работы требуется электроэнергия. Ориентировочно, затратив 1 кВт электроэнергии на работу компрессора и насосов, можно получить 3 — 5 кВт тепловой энергии. В летний период, при наличии реверсивного режима работы, тепловой насос может охлаждать воздух в помещении.

Эффективность тепловых насосов зависит от способа обогревания и качества утепления дома. Наиболее рациональным является применение низкотемпературных систем отопления (один из примеров — система теплый пол). Связано это с низкотемпературным режимом нагревания воды тепловым насосом. И, если бы в данном случае использовались традиционные радиаторы, то они должны быть увеличенных размеров.

Преимущества тепловых насосов

У тепловых насосов есть ряд существенных преимуществ:

  • В первую очередь стоит отметить долговечность таких систем. Тепловые насосы могут работать 20-25 лет, после чего компрессор насоса может быть заменен и система продолжит свою работу.
  • Кроме того, системы тепловых насосов безопасны, поскольку отсутствуют топливо, открытый огонь и опасные газы.
  • Следующий положительный фак — экологическая чистота системы, которая в процессе функционирования не образует вредные окислы, а применяемые в них фреоны не содержат хлороуглеродов.

Основным недостатком системы является высокая стоимость. В связи с этим, выбирая тепловой насос, не стоит заказывать оборудование максимальной мощности.

Это неоправданно дорого и не имеет смысла, так как фактическое количество холодных дней обычно не превышает двух-трех недель за год. Оптимальный тепловой насос должен иметь мощность, равную 60 — 80% от максимальной.

А для покрытия пиковых нагрузок можно установить резервный котел с традиционным видом топлива либо использовать встроенные в тепловые насосы ТЭНы.

Виды тепловых насосов

Естественным источником энергии для теплового насоса может быть:

  • Тепло земли (тепло грунта).
  • Подземные воды (грунтовые, артезианские, термальные).
  • Наружный воздух.

Искусственные источники низкопотенциального тепла:

  • Удаляемый вентиляционный воздух.
  • Канализационные стоки (сточные воды).
  • Промышленные сбросы.
  • Тепло технологических процессов.
  • Бытовые тепловыделения

И в зависимости от источников энергии тепловые насосы подразделяются на следующие типы:

  • Вода — вода.
  • Вода — воздух.
  • Грунт — вода.
  • Грунт — воздух.
  • Воздух — вода.
  • Воздух — воздух.

Тепловые насосы типа «грунт – вода», «грунт – воздух»

На глубине ниже 10 м температура грунта практически постоянна в течение всего года.

Насосы типа «грунт – вода» используют тепловую энергию земли и передают ее для обогрева дома через систему водяного отопления.

 В тепловых насосах, работающих по принципу «грунт – воздух», тепловая энергия также отбирается у грунта и через компрессор напрямую передается воздуху, который используется для отопления зданий.

Механизм теплообмена следующий:

  • Энергия, отобранная от земли, аккумулируется носителем, в качестве которого чаще всего используется незамерзающая жидкость — антифриз («рассол»).
  • Опускаясь вниз по теплообменнику, «рассол» отбирает у грунта тепло (примерно 3 — 4 °С) и передает его фреону, циркулирующему во внутреннем контуре теплового насоса.
  • Фреон, проходя через каналы испарителя, закипает и испаряется.
  • Образовавшийся при этом пар поступает в компрессор, сжимается там (при этом температура его повышается), после чего горячий и сжатый пар направляется в теплообменник конденсатора, где охлаждается, передавая тепло воде.
  • Вода используется в системе отопления и горячего водоснабжения, а жидкий фреон стекает на дно конденсатора, откуда, за счет перепада давлений, через дроссель возвращается в испаритель.
  • Данный порядок цикличен — повторяется снова и снова.

Теплообменник в тепловых насосах типа «грунт – вода» бывает двух видов:

  1. Горизонтальный коллектор.
  2. Вертикальный коллектор.

Горизонтальный коллектор

При данной реализации отбирается тепло, накопленное в верхних слоях почвы в результате солнечного излучения, и коллектор представляет собой несколько контуров пластиковых труб, уложенных под слоем грунта.

Для эффективной работы системы, исходя из особенностей грунта, его теплопроводности и геометрии участка, выбирается определенная схема укладки труб – петля, змейка, зигзаг, плоские и винтовые спирали разных форм. Также, эффективность теплообмена увеличивается на влажных грунтах и уменьшается на сухих песчаных участках.

Для отопления дома площадью 70 — 100 м² достаточно уложить приблизительно 200 — 320 м трубопровода несколькими петлями-контурами. Для этого нужен участок площадью примерно 150 — 200 м², то есть в 1,5 — 2 раза больше, чем отапливаемая площадь дома. Дальнейшее использование такого участка над коллектором возможно только в качестве лужайки или цветника.

Главное преимущество использования горизонтального коллектора в связке с тепловым насосом — простота монтажа и то, что при прочих равных условиях работы по монтажу оборудования обойдутся немного дешевле, чем бурение скважин.

Вертикальный коллектор

Грунтовые зонды вертикального коллектора представляют собой систему длинных труб, опускаемых в скважины глубиной 50-200 м.

Пространство в скважине вокруг зонда заполняется буровым раствором или цементно-бетонной смесью для защиты труб от повреждений и улучшения теплопередачи.

Для дома площадью 70 — 100 м² понадобится 2 — 3 скважины глубиной около 50 м. Располагать скважины следует не ближе 2 м от стены дома, чтобы не повредить фундамент.

Также скважины не должны находиться на одной линии течения подземных вод — иначе эффективность теплового насоса уменьшится.

Для вертикального коллектора не требуется большой участок, а на глубинах от 50 м температура грунта выше, потому эффективность теплообмена при использовании данной системы выше на 15 — 20%, чем у горизонтального коллектора.

Тепловые насосы типа «воздух – вода», «воздух – воздух»

Тепловой насос типа «воздух – воздух» и «воздух – вода» схожи по принципу работы с кондиционерами. Они стоят дешевле, но проигрывают другим видам насосов по универсальности, применяясь преимущественно для нагревания горячей воды.

Такие устройства имеют два варианта исполнения:

  1. Сплит система состоит из двух блоков, соединенных инженерными коммуникациями. В состав наружного входят мощный вентилятор и испаритель, а внутренний содержит конденсатор и автоматику. При этом компрессор может располагаться как во внутреннем блоке, так и в наружном, чтобы избежать шума в помещении.
  2. В моно системе все элементы собираются в одном корпусе и монтируются либо в доме, соединяясь с улицей гибким воздуховодом, либо снаружи.

Тепловые насосы типа «вода – вода»

При соседстве с домом реки или пруда можно использовать тепловой насос, работающий по схеме «вода – вода». Для этого из водоема отбирается мощным насосом вода, которая прокачивается через первичный теплообменник теплового насоса, отдавая свою тепловую энергию фреону, и сбрасывается обратно в водоем.

Тепловой насос типа вода — вода наиболее экономичный. Однако, из-за загрязненности используемой воды необходимо предпринимать дополнительные меры для ее предварительной очистки перед подачей в тепловой насос.

Пример схемы обвязки теплового насоса вода — вода:

  1. Теплообменник для пассивного охлаждения
  2. Расширительный бак внешнего контура теплового насоса
  3. Коллектор потолочного охлаждения
  4. Расширительный бак системы отопления
  5. Группа безопасности котла (теплового насоса)
  6. Расширительный бак для ГВС
  7. Резервный котел (высокотемпературный) с насосом и группой безопасности
  8. Узел подмеса системы отопления
  9. Термостатический клапан радиатора отопления
  10. Буфер (тепловой аккумулятор)
  11. Основной насос системы отопления
  12. Тепловой насос вода-вода со встроенными циркуляционными насосами
  13. Бойлер косвенного нагрева для ГВС
  14. Насос рециркуляции ГВС
  15. Коллектор водоснабжения
  16. Коллектор теплых полов
  17. Коллектор радиаторов

Подведем итог. Первоначальные затраты на систему отопления с тепловым насосом и ее обустройство достаточно высоки. Но, с учетом низких расходов на отопление, со временем можно покрыть первоначальные вложения и продолжить использование альтернативных источников для обогрева дома.

Принцип работы теплового насоса

Схема работы теплового насоса
Принцип работы теплового насоса

Простейший тепловой насос был спроектирован еще в 1852 году и получил название «умножитель тепла». Лорд Кельвин открыл основополагающие принципы действия, которые легли в основу всего современного отопительного оборудования.

Согласно законам физики, тепло передается от нагретого тела к тому, что имеет меньшую температуру. Но, возможен обратный процесс, при условии использования для этого дополнительной энергии.

Немного позже был открыт принцип обратного цикла Карно. Вещество, при испарении, поглощает тепло, а после конденсации на поверхности, отдает его. Именно этот закон лежит в основе холодильников и кондиционеров. Низкотемпературный воздушный теплонасос работает как эти бытовые приборы, только в «обратную сторону».

Основной принцип теплового насоса заключается в аккумулировании низкотемпературного тепла при испарении и дальнейшей отдачи энергии при последующей конденсации. Этот процесс происходит без изменения температуры, если только рабочее тело не будет сжато механически, что приведет к повышению температуры.

Теплонасос функционирует как холодильник, только наоборот: холодильник переносит тепло изнутри во вне, в то время как тепловой насос переносит тепло из окружающей среды вовнутрь. Природное тепло теплоносителя (в роли которого выступает вода или рассол) передается к испарителю.

Внутренний контур теплового насоса заполнен хладагентом (рабочее вещество: фреон, аммиак, метан, пропан и др.), который, проходя через испаритель, превращается из жидкого состояния в газообразное.

Из испарителя газообразный хладагент попадает в компрессор, где он сжимается до высокого давления и высокой температуры. Далее горячий газ поступает в конденсатор, где происходит теплообмен между горячим газом и теплоносителем из обратного трубопровода системы отопления дома.

Хладагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкое состояние, а нагретый конденсатор передает тепло в систему отопления.

Первичный контур теплового насоса состоит из элементов, участвующих в получении тепла из внешнего источника – например теплообменника, циркуляционного насоса рассола или воздушного вентилятора, а у водо-водяного теплового насоса еще и промежуточного теплообменника. Вторичный контур включает в себя компоненты, необходимые для преобразования энергии и передачи ее потребителю.

Низкотемпературные воздушные тепловые насосы для отопления дома работают, используя тот же физический принцип, но с большей эффективностью. Как отопление осуществляется на практике?

  • Любое, даже охлажденное тело, имеет потенциальную тепловую энергию. Даже при отрицательной температуре в воздухе содержится определенное количество тепла. При -15°С больше, чем при -25°С. При -5°С еще больше тепла находится в воздухе. Принцип работы воздушного теплового насоса позволяет извлечь то небольшое количество тепловой энергии, которое есть и в зимнее время года в воздухе, и передать его в помещение.
  • В наружном блоке, установленном на улице, расположен змеевик с испарителем. Внутри контура циркулирует фреон – жидкость, которая свободно переходит в газообразное состояние и обратно. Фреон испаряют, при этом поглощается то тепло, которое есть в наружном воздухе даже при отрицательных температурах.
  • Испарившийся газ поступает в компрессор, где создается высокое давление и где фреона нагревается.  Под давлением фреон разогревается и поступает в конденсатор, где он преобразуется в жидкость. При этом выделяется тепло, которое фреон получил при испарении во внешнем блоке от наружного воздуха.
  • Фреон, по замкнутому контуру, обратно возвращается в испаритель, и цикл повторяется.

Режимы работы тепловых насосов

В зависимости от характера отопления и необходимости различных температур для отопления, существует выбор типа теплового насоса или его комбинации с другим теплогенератором. По режиму работы выделяют моновалентное, бивалентное и моноэнергетическое использование тепловых насосов:

  • В моновалентном режиме эксплуатации тепловой насос является единственным источником тепла для помещения, включая отопление и горячее водоснабжение. Требуемая максимальная температура подачи в отопительную систему в данном случае должна быть немного ниже максимально возможной температуры подачи теплового насоса.
  • В бивалентном режиме возможна эксплуатация со вторым теплогенератором как в полном параллельном режиме, так и частичном. В этом случае тепловой насос выступает как основной теплогенератор, а более высокую температуру системы отопления обеспечивает дополнительный пиковый котел.
  • В моноэнергетическом режиме вторым теплогенератором выступает установка той же породы — электрическая, т.е. используется электронагревательный котел (или электронагревательная вставка).

Тепловые насосы имеют следующие преимущества по сравнению с традиционными видами отопления:

  • Высокая эффективность. КПД теплового насоса составлет 300-700%, т.е. он поглощает в 3-7 раз меньше электрической энергии, чем выделяет тепла. Например, КПД насоса, представленного на рисунке, составляет 400%.
  • Реверсивность. Тепловой насос может быть использован как кондиционер в летний сезон
  • Экологичность. Cбережение невозобновляемых энергоресурсов и защита окружающей среды, в том числе и путем сокращения выбросов СО2 в атмосферу
  • Надежность. минимум подвижных частей с высоким ресурсом работы, независимость от поставки топочного материала и его качества, защита от перебоев электроэнергии
  • Долговечность. Cрок службы теплового насоса составляет 15-25 лет
  • Безопасность. Не имеет открытого пламени, выхлопов,пожароопасных хранилищ для угля, дров, мазута или солярки; исключена утечка газа или разлив мазута

Эта статья прочитана 5893 раз(а)!

Продолжить чтение

  • Тепловые насосы фирмы Nibe- описание, типы, особенности монтажа
  • Тепловые насосы – типы и особенности

Принцип работы теплового насоса. Схема теплового насоса

Схема работы теплового насоса

Эта статья расскажет о принципе работы теплового насоса, способах автоматизации, контроля и аварийной сигнализации.

Функции автоматизации тепловых насосов

Тепловые насосы позволяют утилизировать низкотемпературную энергию. К теплонасосной установки выдвигаются высокие требования к автоматизации режима ее работы, при чем оборудование для автоматизации должно выполнять следующие функции:

  • автоматизацию и контроль внутренних процессов холодильной машины;
  • независимую работу элементов установки и их взаимосвязки в единую систему;
  • регулирование мощности теплового насоса в соответствии с изменением нужной мощности в теплопотребители;
  • автоматизацию системы циркуляции горячей и холодной воды;
  • обеспечение повышенной надежности установки, ее отключения при превышенные допустимых параметров и безопасный режим эксплуатации;
  • автоматическое управление и контроль за установкой и сигнализацию о параметрах режима.

Контрольно измерительные приборы

Контрольно-измерительные приборы ТНУ управляют всеми процессами при эксплуатации установки, например, регулируют заполнение испарителя, контролируют давление малая, регулируют уровень на стороне высокого давления, предотвращают перегрузкой двигателя, испаритель от замерзания и др.

Чтобы обеспечить стойку и в то же время экономическую эксплуатацию установки, необходимо использовать такое реле низкого давления, которое надежно бы срабатывало при малом дифференциале и в тех случаях, когда параметры режима работы приближаются к предельным значениям. То же относится и к реле высокого давления.

Для получения высокой температуры воды на выходе установка эксплуатируется с таким давлением в конденсаторе, которое почти отвечает максимально допустимому рабочему давлению.

Поэтому рабочее давление, давление срабатывания предохранительного реле и давление срабатывания предохранительного клапана несущественно отличаются друг от друга.

Устройства автоматизации и управления тепловым насосом

Для эксплуатации теплонасосной установки в автоматическом и полуавтоматическом режимах необходимы специальные устройства, которые управляют установкой. Они влияют на взаимосвязь отдельных элементов установки в соотношении с разными условиями эксплуатации и нагрузки. К задачам такого управления относятся:

  • пуск и остановка установки с запуском компрессора и насоса на холостом ходе и в безопасном режиме;
  • включение насоса для циркуляции горячей и холодной воды, циркуляции в линиях с источником теплоты;
  • включение холодильной установки, прежде всего компрессора;
  • последовательное включение отдельных поводов при возможных часовых пиковых нагрузках, чтобы уменьшить пусковой ток и обеспечить защиту повода в период эксплуатации, например, последовательное включение насосов горячей и холодной воды, компрессора, а также защита, при которой компрессор может работать только при протекании воды через испаритель и конденсатор;
  • управление переключающими клапанами, когда тепловой насос на стороне испарителя и конденсатора работает на несколько контуров циркуляции воды. Задача такого упра- вления заключается в приведении в действие переключающих клапанов, обеспечивающих максимальное использование источников теплоты при оптимальном режиме работы установки в соответствии с условиями эксплуатации и нагрузками;
  • эксплуатация установки в автоматическом режиме во время отсутствия персонала (ночью и в выходные дни). В конце воскресенья насос работает в автоматическом режиме без персонала из второй половины дня в пятницу до утра в понедельник, то есть почти 72 часа.

Устройства контроля и сигнализации

Поэтому часто нужны вспомогательные устройства для осуществления контроля, сигнализации и выполнения специальных управляющих функций : например, нужные приборы для контроля уровня масла в компрессоре, уровня заполнения установки водой, предупредительной сигнализации о повреждении, автоматического включения установки потом перерыва в электропоставке, регулирование с коррекцией в зависимости от действия окружающей среды.
Контрольно-измерительные приборы нужны также через необходимость контролирования и обеспечения безопасности установки :

  • определение и запись эксплуатационных параметров, например температуры;
  • сигнализация об условиях эксплуатации, например о включении насоса и компрессора, положения клапанов;
  • контроль параметров установки и режима работы, а также сигнализация о превышении предельных значений и повреждений;
  • контроль режима эксплуатации в аварийной ситуации и проведения операций для предотвращения аварий и повреждений, например: защита от высокого давления, предотвращение замерзания, контроль пускового тока с отключением компрессора и насоса при повышении допустимого пускового тока, защита от перегрузки двигателя.

Работа теплового насоса

Режим работы теплового насоса — одинаковая потребность в холоде и теплоте. Обе стороны теплового насоса (конденсатор и испаритель) работают без излишка. Теплота, которая была забрана у охладительной воды в испарителе, привстает к горячей воде в конденсаторе в соответствии из компрессора.

Кроме приводной энергии, в схеме теплонасосной установки не происходит теплообмена с окружающей средой и, соответственно, теплота не попадает от источников и не отдается теплообменниками.Тепловой насос используеться полностью, конденсатор и испаритель включены только в соответствующий контур полезной циркуляции.

Горячая и холодная вода регулируется в соответствии с заданными параметрами.

Для данной системы автоматического регулирования характерные следующие особенности:— регулируемыми параметрами является температура горячей и холодной воды;— регулирующие влияния в циркуляционном контуре горячей воды заключаются в изменении компрессора и затраты горячей воды через конденсатор; оба регулирующих влияния выполняются последовательно;— так как изменение компрессора служит регулирующим действием в обоих циркуляционных контурах, необходимо применять оптимизирующую систему регулирования, переключающая цепь управления компрессором на другой контур.

В другом контуре регулирующим влиянием является изменение затраты потока, которая осуществляется соответствующим его дросселированием.

Принципиальная схема

Принципиальная схема работы теплового насоса.

В закрытом контуре происходит поочерёдное испарение, сжатие, конденсация (сжижение) и расширение рабочего вещества – хладагента, закипающего уже при невысокой температуре.

1.Испаритель — в испарителе находится жидкий хладагент низкого давления. Его темпе-ратура ниже, чем температура источника тепла. Поэтому тепло от источника тепла передаётся хладагенту, что приводит к испарению хладагента.

2.Компрессор — газообразный хладагент сжимается в компрессоре до высокого давления и при этом настолько сильно нагревается, что температура хладагента после компрессии ста-новится выше температуры, необходимой для отопления и ГВС. Кроме того, энергия привода компрессора тоже преобразуется в тепло и «перетекает» к хладагенту.

3.Конденсатор — очень горячий хладагент высокого давления отдаёт в конденсаторе всё своё тепло, то есть тепло, полученное от источника тепла, а также тепло энергии привода компрессора в систему отопления (перепад тепловых потенциалов). При этом хладагент сильно охлаждается и снова становится жидким.

4.Расширительный клапан — затем хладагент проходит через расширительный клапан и снова возвращается в испаритель. В расширительном клапане происходит декомпрессия до первоначального давления. Цикл завершился.

Режимы эксплуатации тепловых насосов — ТН(тепловой насос) для отопления помещений – в зависимости от типовых условий – могут эксплуатироваться самыми разнообразными способами. Выбор того или иного режима работы должен ориентироваться, прежде всего, на уже имеющиеся в здании или планируемые системы отдачи тепла и на выбранный источник тепла:

1). Моновалентный режим

О моновалентном режиме эксплуатации речь идёт тогда, когда ТН(тепловой насос) покрывает всю потребность в тепле для отопления и ГВС. Оптимальными для этого являются такие источники тепла, как грунт и грунтовые воды, так как эти источники тепла почти незави-симы от наружной температуры и поставляют вполне достаточно тепла даже при низких тем-пературах.

2). Бивалентный режим

В бивалентном режиме, наряду с ТН(тепловым насосом) всегда применяется второй теплогенератор, чаще всего – уже имеющийся жидкотопливный котёл. В прошлом для одно- и двухсемейных домов этот вид эксплуатации имел огромное значение, прежде всего – в сочета-нии с воздушно-водяным ТН(тепловым насосом).

При этом основное теплоснабжение выпол-нялось ТН(тепловым насосом), а, начиная с наружной температуры, например, ниже 0°C, к работе подключался жидкотопливный котёл.

Из экономических соображений – поскольку всегда требуется два теплогенератора – такие системы сейчас не получают широкого распространения и реализуются лишь в отдельных редких случаях.

Земляной зонд

Тепловой насос с земляным зондом

Для получения тепла из земли надежным решением являются земляные зонды. Этот теплосборник особенно актуален при небольшой площади участка земли, готового к земляным работам.1. Участок течения вперёд.

Обратка с перепадом от теплового насоса к земляному зонду в песочной подушке на глубине примерно 1м.2. Обсадная труба при невязном материале, длиной около 6-20м, диаметром примерно 170 мм.3.

Двутавро-трубчатый зонд (на одну бурильную скважину используетя два контура), глубина бурения в зависимости от свойств грунта согласно назначенным размерам.4. Заполнение полостей бетоном, кварцевым песком или дамбовиком.5. Диаметр бурильной скважины примерно 115-220 мм.6.

Минимальное расстояние от фундамента здания должно составлять не менее 2м.7. Вентили.8. Дополнительный металлический груз для установки коллектора, длиной около 90см, диаметром около 8см.

9. Отклоняющаяголовка предварительно приваривается к трубам коллектора, длина примерно 150 см, диаметр около 10см.

Земляной коллектор

Земляной коллектор особенно удачно подходит для домов с большой площадью участка земли. Мощьность отбора тепла завиит от свойств почвы. Чем влажнее почва, тем выше эта мощность. Земляной коллектор укладывается ниже уровня промерзания грунта.

В климатических условиях подмосковья этот уровень около 1.4м. Выесь коллектор заполняется незамерзающей жидкостью. Над коллектором в грунт можно выаживать растения (кроме деревьев с глубокой корневой системой) и ставить небольшие постройки без фундамента (беседка, бытовка, сарай).

Земляной коллектор теплового насоса

1. 0,5м Дистанция от внешнего края кроны дерева.2. 1-1,5м глубина укладки коллектора.3. 1,5м дистанция до трубопроводов с дождевой, питьевой и прочей воды.4. 1,5-2м дистанция от фундамента здания.

5. 1м от фундаментов заборов и прочих лёгкихконструкций.

Схема и технология работы теплового насоса

Схема работы теплового насоса

Сжигание классического топлива (газ, дрова, торф) является одним из древних способов получения тепла. Однако истощение традиционных источников энергии побудили человека искать более сложные, но не менее эффективные альтернативные варианты. Одним из ни стало изобретение теплового насоса, работа которого основана на школьных законах физики.

Схема теплового насоса

Работоспособность большинства тепловых насосов базируется на тепле грунта, в котором на протяжении года температура практически не колеблется (в пределах 7-10 градусов). Тепло перемещается между тремя контурами:

  1. Контур отопления
  2. Тепловой насос
  3. Рассольный (он же земляной) контур

Классический принцип работы тепловых насосов в отопительной системе состоит из следующих элементов:

  1. Теплообменник, отдающий внутреннему контуру тепло, забираемое у земли
  2. Сжимающее устройство
  3. Второе теплообменное устройство, передающее отопительной системе энергию, получаемую во внутреннем контуре
  4. Механизм, понижающий давление в системе (дросселе)
  5. Рассольный контур
  6. Земляной зонд
  7. Отопительный контур

Труба, которая выполняет роль первичного контура, помещается в колодец или закапывается непосредственно в землю. По ней перемещается незамерзающий жидкий теплоноситель, температура которого повышается до аналогичной характеристики земли (около +8 градусов) и поступает во второй контур.

Вторичный контур забирает тепло у жидкости. Циркулирующий внутри фреон начинает закипать и преобразовываться в газ, который направляется в компрессор. Поршень сжимает его до 24-28 атм, благодаря чему происходит увеличение температуры до +70-80 градусов.

На данном рабочем этапе происходит концентрирование энергии в один небольшой сгусток. Благодаря этому увеличивается температура.

Разогретый газ поступает в третий контур, который представлен системами горячего водоснабжения или даже отопления дома. При передаче тепла возможны потери до 10-15 градусов, но они оказываются не существенны.

Когда фреон остывает, происходит уменьшение давления, и он вновь превращается в жидкое состояние. При температуре 2-3 градуса он поступает обратно во второй контур. Цикл повторяется снова и снова.

Основные виды

Устроен принцип работы тепловых насосов так, чтоб они легко эксплуатировались без перебоев в широком диапазоне температур – от -30 до +40 градусов. Наибольшую популярность получили следующие два вида моделей:

  • Абсорбционного типа
  • Компрессионного типа

Абсорбционного типа модели имеют достаточно сложное устройство. Они передают полученную тепловую энергию непосредственно при помощи источника. Их эксплуатация значительно снижает материальные затраты на расходующиеся электричество и топливо. Компрессионного типа модели для переноса тепла потребляют энергию (механическую и электрическую).

В зависимости от применяемого теплового источника насосы подразделяются на следующие виды:

  1. Перерабатывающие вторичное тепло – самые дорогостоящие модели, получившие популярность для обогрева объектов в промышленности, в которых вторичное тепло, вырабатываемое другими источниками, расходуется в никуда
  2. Воздушные – забирающие тепло из окружающего воздуха
  3. Геотермальные – выбирают тепло из воды или земли

По видам входного/выходного теплоносителя все модели можно классифицировать следующим образом – грунт, вода, воздух и их различные сочетания.

Геотермальные тепловые насосы

Популярными являются геотермальные модели насосов, которые подразделяются на два вида: замкнутого или открытого типа.

Простое устройство открытых систем позволяет нагревать проходящую внутри воду, которая в последствии вновь поступает в землю. Идеально она работает при наличии неограниченного объема чистого жидкого теплоносителя, который после потребления не наносят вред среде.

Замкнутые системы геотермальных тепловых насосов делят на следующие разновидности:

  • Водный – коллектор располагается в водоеме на непромерзаемой глубине
  • С вертикальным расположением – коллектор помещается в скважину на глубину до 200 м и применим в местностях с неровным ландшафтом
  • С горизонтальным расположением – коллектор помещается в землю на глубину 0.5-1 м, очень важно обеспечить на ограниченной площади большой контур

Насос типа воздух-вода

Одним из наиболее универсальных вариантов является модель «воздух-вода». В теплые периоды года она весьма эффективна, но зимой производительность может существенно падать.

Преимуществом системы является простой монтаж. Подходящее оборудование может монтироваться в любом удобном месте, например, на крыше. Тепло, которые в виде газа или дыма удаляется из помещения, может использоваться повторно.

Тип вода-вода

Тепловой насос «вода-вода» один из самых эффективных. Но его использование может быть ограничено наличием поблизости водоема или недостаточной глубиной, на которой в зимний период не наблюдается существенного падения температуры.

Низко потенциальная энергия может выбираться из следующих источников:

  • Грунтовые вода
  • Водоемы открытого типа
  • Сточные промышленные воды

Наиболее прост принцип работы тепловых насосов у моделей, отбирающих тепло в водоеме. Если принято решение использовать подземные воды, может потребоваться бурение колодца.

Тип грунт-вода

Тепло из грунта можно получать на протяжении всего года, так как на глубинах от 1 м температура практически не меняется. В качестве носителя тепла используют «рассол» — незамерзающую жидкость, которая циркулирует по пластиковым трубам.

Один из недостатков системы «грунт-вода» — необходимость большой площади для достижения желаемой эффективности. Нивелировать его стараются укладкой труб кольцами.

Коллектор можно располагать в вертикальном положении, но потребуется скважина глубиной до 150 м. На дне монтируются зонты, отбирающие тепло грунта.

Плюсы и минусы отопительных систем с тепловым насосом

Тепловые насосы нашли широкое применение в системах отопления частной жилой площади или промышленных площадей. Они постепенно вытесняют более классические источники энергии благодаря надежности и экономичности.

Среди многочисленных преимуществ, которые предоставляет эксплуатация теплового насоса, выделяют:

  • Экономия материальных средств на техническом обслуживании систем и теплоносителе
  • Насосы работают полностью в автономном режиме
  • В окружающую среду не выделяются вредные продукты горения и прочие токсичные вещества
  • Пожаробезопасность монтируемого оборудования
  • Возможность легко реверсировать работу системы

Несмотря на массу преимуществ, необходимо принять во внимание и отрицательные стороны эксплуатации теплового насоса:

  • Большие первоначальные вложения на обустройства отопительной системы – от 3 до 10 тысяч долларов
  • В холодные периоды, когда температура отпускается ниже -15 градусов, необходимо подумать об альтернативных вариантах отопления
  • Отопление, основанное на работе теплового насоса, наиболее эффективно только в системах низкотемпературным теплоносителем

Еще одно схематичное видео:

Подводим итоги

Узнав и освоив принцип работы теплового насоса, можно подумать и принять решение о целесообразности его установки и использования. Первоначальные затраты, которые могут показаться очень масштабными, в скором времени окупятся и начнут приносить своеобразную прибыль в виде экономии на классическом топливе.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.