Сканеры это аналого цифровые преобразователи

Содержание

Сканер. Виды и устройство. Работа и применение. Как выбрать

Сканеры это аналого цифровые преобразователи

Сканер— это специализированное устройство, которое используется для перевода изображений выбранной поверхности в цифровой вид.

В качестве подобных поверхностей могут выступать страницы книг, журналов, тетрадей, фотоснимки, слайды и иные документы с графикой и текстовыми данными.

Сканирующие устройства могут работать в виде периферийного от ПК или в качестве автономного устройства, то есть они могут самостоятельно передавать отсканированное изображение по глобальной сети или wi-fi.

Впервые технология сканирования появилась в 1857 году благодаря флорентийскому аббату Джованни Казелли. Он создал устройство пантелеграф, которое передавало изображения по проводам. При приеме оно наносилось на барабан с помощью токопроводящих чернил, затем считывалась иглой.

Через пять лет был запатентован фотоэлектрический принцип сканирования. В дальнейшем прибор, работающий по данной технологии, начали называть телефакс. Современные сканирующие устройства претерпели существенные изменения, они стали на порядок эффективнее и производительнее.

Сканерусловно может быть:

  • Промышленного назначения.
  • Бытового назначения.

Промышленные применяются на различных производствах.

К ним предъявляются высокие требования по скорости работы, качеству сканирования, надежности и иным рабочим параметрам, ведь они предназначены для постоянного функционирования. Домашние используются редко, вследствие чего они дешевле и менее производительны.

Тем не менее, в последнее время выпускаются устройства для дома, которые по скорости сканирования не уступают промышленным.

По области применения сканирующие устройства могут быть:

  • Планшетный вариант. Является самым популярным в бытовом применении. В данном случае сканируемый объект размещается на стеклянном планшете. Фотоэлектрическая каретка с оптическими элементами перемещается по планшету, считываемая картинка в результате преобразуется в цифровой код. Планшетные модели, как правило, стоят недорого, они легки и удобны в работе.
  • Пленочный вариант. Это специализированное устройство, которое используется лишь для сканирования объектов прозрачного вида, к примеру, диапозитивов, негативов или слайдов. Устройства подобного вида часто применяются студийными сотрудниками или профессиональными фотографами. В быту подобные приборы используются редко, так как люди предпочитают пользоваться услугами фотостудий.
  • Барабанный вариант. В нем сканируемое изображение устанавливается на вращающийся барабан. Цифровое изображение снимается лучом при вращении барабана. Такие устройства обеспечивают весьма высокое качество картинки. Однако у них высокая стоимость и большие габариты, вследствие чего их применяют лишь крупные компании. В основном их используют в полиграфии.
  • Протяжные. Такие устройства используются для несброшюрованных документов. Их часто именуют документными, ведь они дают возможность провести автоматизацию сканирования значительных объемов офисной документации. Здесь работает принцип автоматической подачи листов. Система обеспечивает протягивание сканируемых материалов через фотосчитывающую систему, поэтому их часто называют поточными. Однако такие устройства не способны отсканировать скрепленные листы.
  • Паспортные. Данные устройства приспособлены под сканирование водительских удостоверений, паспортов и иных документов, удостоверяющих личность. Они выделяются компактностью и хорошей скоростью сканирования.
  • Планетарные. Обеспечивают бесконтактное сканирование журналов и документов. Указанные устройства часто применяются для оцифровки оригиналов, которые требуют деликатного подхода, к примеру, исторических документов, которых не пожалело время.
  • Сетевые. Их подключают непосредственно в сетевой инфраструктуре без применения ПК. Благодаря этому каждый сотрудник компании может сканировать документы, отправляя их по электронной почте или сохраняя в сетевой папке.
  • Ручные. Эти устройства также делятся по принципу действия;
    • устройство удерживается в руке и проводится по поверхности;
    • ручка сканер или сканирующее перо. Сканирует каждую строчку;
    • подобие протяжного устройства, но маленьких габаритов.

Книжный сканеримеет следующие основные элементы:

  • Сканирующая головка, она находится на небольшой высоте над изображением. В большинстве случаев она выполнена в виде сканирующей линейки и выполняет сканирование, проходя от одного конца книги или журнала до другого.
  • Ряд моделей имеют книжную колыбель, которая требуется для обеспечения выравнивания высоты книжной поверхности. С целью разглаживания и снижения искажений может применяться прижимное стекло. Для книг могут применяться V-образные колыбели.
  • Головки часто содержат матрицы, которые схожи с матрицами цифровиков. У этих агрегатов сканирование осуществляется за период раскрытия затвора, что позволяет ускорить процесс. Матрица трансформирует световое отражение изображения в аналоговые электрические сигналы (АЭС).
  • (АЭС) сигналы проходят через аналого-цифровой преобразователь. Он переводит аналоговый сигнал в цифровую форму.
  • Процессор согласует взаимодействие всех узлов устройства, в том числе формирует данные о картинке для последующей отправки в ПК.
  • Контроллер интерфейса контролирует обмен данными и командами между ПК и сканером.
  • Лампа устанавливается на сканирующей каретке.
  • Шаговый двигатель и блок управления приводят в движение каретку и сканирующую головку на ней.

Принцип действия

Сканервыполняет функцию сканирования, чтобы передать цифровое изображение на ПК или отправить по почте. С этой целью объект помещается на прозрачном стекле устройства.

При запуске агрегата в движение приводится каретка, которая начинается светиться.

Оптическая система устройства, включающая объектив и зеркала, направляет световой поток от отсканированной поверхности объекта на приемный элемент. В нем происходит преобразование данных.

Аналоговый сигнал направляется на преобразователь, где преобразуется в цифровой код. Далее в действие вступает контроллер, который через кабель передает код на персональный компьютер. На ПК полученное изображение можно отредактировать и использовать по назначению.

Сканерприменяется в самых разнообразных сферах деятельности в:

  • Компаниях и организациях, где устройство используется для сканирования документов.
  • Полиграфии.
  • Фотостудиях.
  • Промышленности.
  • Библиотеках.
  • Научных лабораториях.
  • Школах, техникумах и университетах.
  • Быту, и там, где имеется необходимость отсканировать изображение с книги, документа, журнала, фотографии, слайда и так далее.

Как выбрать

Сканерследует выбирать с учетом того, где Вы его предполагаете использовать. Необходимо определиться, какие задачи он будет выполнять. В отличие от компьютера сканирующее устройство будет проблематично модернизировать, установив в него дополнительные комплектующие. Поэтому следует взвесить все «за» и «против».

  • Выбирая сканер для бытового или офисного использования, важно изучить ее технические характеристики. Офисное сканирующее устройство должно максимально отвечать специфике организации. В большинстве случаев подобная техника в офисе применяется для сканирования текстовых документов и оцифровки архивов. Поэтому устройство должно иметь функцию автоподачи бумаги.
  • Организации, которые работают с большими форматами и полиграфией важна возможность сканирования документов крупных размеров, а также качество сканирования.
  • Для сканирования в домашних условиях в большинстве случаев руководствуются невысокой ценой и компактностью. Для бытового использования нет смысла приобретать дорогостоящее оборудование, ведь почти все сканирующие устройства вполне справляются с поставленными задачами нетребовательного пользователя. Здесь не требуется высочайшее разрешение, большой формат или интерфейс, который работает на высокой скорости.
  • Присутствие в устройстве слайд-адаптера, в том числе дополнительных опций в виде функции удаления эффекта красных глаз или восстановления цвета сделают пользование более удобным, особенно если Вы хотите сканировать фотографии и негативы.
  • Глубина цвета определяет, сколько оттенков цвета будет воспринимать сканирующее устройство. Для домашнего использования вполне хватит 24 бит.
  • При непосредственной покупке нужно обязательно проверить сканирующее устройство. Для этого нужно отсканировать фотографию или иной документ. Нужно посмотреть, как быстро работает сканер, как передаются цвета, в особенности это касается белого цвета. Следует оценить четкость сканирования мельчайших деталей при определенном разрешении, в том числе в каких форматах изображения могут сохраняться на компьютере. Если Вас все устраивает, то можно смело оформлять покупку.

Похожие темы:

Технические средства информации

Сканеры это аналого цифровые преобразователи

  1. Жёсткий диск ,его назначение, основные функции…….. Стр. 3

  1. Внутренняя память ПК……………………………………. Стр. 3

  1. Основные факторы влияющие на производительность ПК

.………………………………………………..…………….Стр. 3

  1. Сканеры, виды, характеристики…………………………… Стр.4

  1. Внутреннее устройство лазерного принтера ………………. Стр. 6

  1. Список используемой литературы ……………………….. Стр. 8

Жёсткийдиск– это магнитное устройство храненияинформации, установленное в специальныеотсеки в системном блоке.Иэто место, где хранится вся ваша информацияи программы. Если жёсткий диск перестанетработать, то вы можете потерять все вашиданные. Правда,важно знать, что в случае ЧП возможновосстановлениеданных.Жесткий диск иногда также называютвинчестером или HDD (Hard Disk Drive).

Назначениежесткого диска:

Длясчитывания и записи информации к каждомудиску в этой стопке подводится магнитнаяголовка. Вращение дисков и перемещениемагнитных головок обеспечиваетсяэлектродвигателями и управляющимиэлектронными схемами.

Основныефункции жесткого диска:Хранениеданных, установка программного обеспеченияисамая главная наша программа (наборпрограмм) – операционная система. Безоперационной системы компьютер – грудадорогого железа

Внутренняяпамять ПК:

Оперативнаяпамять, кеш память, постоянное запоминающееустройство, CMOSRAM,память.

Основныефакторы влияющие на производительностьПК.

Основныеузлы ,материнскаяплата,процессор,видеокарта,оперативнаяпамять.

Сканер– это аналого-цифровые преобразователи.Они превращают аналоговые объекты –документы, страницы книг и журналов,фотографии – в цифровые изображения,которые сохраняются в компьютере в видеграфических файлов.

Специальные программыдля оптического распознавания символов(например, Fine Reader) преобразуют графическоеизображение страницы текста в текстовыйформат.

Картинка становится текстом иего можно редактировать обычным образомв текстовом редакторе.

Виды:Ручнойвид сканеров, Планшетный и Протяжной.

Характеристикисканера

Сканерспособен осуществлять два типа операций:

  • Сканировать изображения;
  • Сканировать текст для дальнейшего распознавания.

Распознаваниетекста – перевод изображений букв ицифр в цифровой вид для последующейобработки в текстовом редакторе.

Передпокупкой стоит определиться с основнымихарактеристиками сканера и требованийк нему.

Главныйпараметр – разрешающая способность,которая измеряется в точках на дюйм(dpi). Подразделяется на два вида:

  • Программное разрешение.
  • Оптическое (реальное) разрешение.

Оптическимразрешением является показательпервичного сканирования. Однакопрограммные средства в большинствеслучаев позволяют повысить качествоизобра­жения, а также его разрешение.

Оптическое разреше­ние сканера -600×600 dpi – это качество среднего скане­радля домашнего использования.

Программноеразрешение может указываться даже4800×4800 dpi, но только показатель оптическогоразрешения указывает на качествополучаемого изображения.

Типичноеразрешение сканера состоит из 2хпоказателей: по гори­зонтали и повертикали.

Выявимнужный для домашнего использованияпоказатель разрешения:

  1. Простая цветная печать на обычном принтере потребует от 300 dpi.

  2. Фотопечать потребует от 600 до 1200 dpi. Все зависит от типа принтера.

  3. Хранение изображений, их просмотр на ПК: от 85 ppi (pixel per inch) до 200 dpi.

  4. Распознавание текста: от 300 до 600 dpi. Зависит от качества исходного документа.

Внутреннееустройство лазерного принтера.

Печатающиймеханизм

  • Фотобарабан (Фотовал, фоторецептор) — алюминиевый цилиндр, покрытый светочувствительным материалом, способным менять своё электрическое сопротивление при освещении. В некоторых системах вместо фотоцилиндра использовался фоторемень — эластичная закольцованная полоса с фотослоем.
  • Магнитный вал — вал в картридже, используемый для переноса тонера из бункера на фотобарабан. (Либо ролик проявки в аппаратах Xerox/Samsung, где используется немагнитный тонер.)
  • Блок лазера (laser beam unit) (либо светодиодная линейка, в светодиодных принтерах)
  • Коротрон (коронатор, ролик заряда, Corona Wire)
  • Лента переноса (transfer belt) — лента в цветных лазерных принтерах, на которую наносится промежуточное изображение с барабанов 4 цветных картриджей, которое затем переносится на конечный носитель— бумагу.
  • Блок проявки (developing unit) служит для переноса тонера на электростатическое изображение, образованное на поверхности фотопроводящего барабана

Расходныематериалы

Тонер— порошок для нанесения изображения.

Носитель(анг.

Carrier) — ферромагнитный порошок(по структуре представляет собой мелкиечастицы), используемый в двухкомпонентныхмашинах для удержания тонера наповерхности магнитного вала за счетэлектростатических сил (при перемешиваниис тонером заряжает его положительнымстатическим потенциалом при взаимномтрении), а оттуда, под воздействиемразряда на коротроне — на поверхностьфотобарабана;причем сам девелопер, в силу своихмагнитных свойств, остается на магнитномвалу и почти не расходуется (однакотеряет со временем свои свойства и тожетребует замены).

Девелопер(анг.Developer) (изредка называется стартером) — смесь материалов, подаваемая кфотобарабану. В двухкомпонентных машинахэто смесь тонера и носителя, а воднокомпонентных машинах — толькотонер. Термин аналогичен применяемомув фотографии термину проявитель, нообычно в русскоязычной литературе непереводится.

Списокиспользуемой литературы:

  1. Информатика в понятиях и терминах: Кн. для учащихся ст. классов сред. шк./ Г.А. Бордовский, В.А. Извозчиков, Ю.В. Исаев, В.В. Морозов; Под ред. В.А. Извозчикова. – М.: Просвещение, 1991. – 208 с.

  1. Радченко Н.П., Козлов О.А. Школьная информатика: экзаменационные вопросы и ответы. – М.: Финансы и статистика, 1998. – 160 с.

  1. Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика. Учебник по базовому курсу (7-9 классы). М.: Лаборатория Базовых Знаний, 1998. – 464 с.

  1. Кушниренко А.Г. и др. Основы информатики и вычислительной техники: Проб. учеб. для сред. учеб. заведений/ А.Г.Кушниренко, Г.В.Лебедев, Р.А.Сворень. – М.: Просвещение, 1990. – 224 с.

  1. Гук М. Аппаратные средства IBM PC. Энциклопедия. СПб.: Издательство “Питер”, 2000. – 816 c.

Стр. 8

Общий принцип работы АЦП

Сканеры это аналого цифровые преобразователи

Давайте рассмотрим основной спектр вопросов, которые можно отнести к принципу действия аналого-цифровых преобразователей (АЦП) разных типов. Последовательный счет, поразрядное уравновешивание – что скрывается за этими словами? В чем заключается принцип работы АЦП микроконтроллера? Эти, а также ряд других вопросов мы рассмотрим в рамках статьи.

Первые три части мы посвятим общей теории, а с четвертого подзаголовка будем изучать принцип их работы. Вы можете в различной литературе встречать термины АЦП и ЦАП. Принцип работы этих устройств немного различается, поэтому не путайте их.

Так, в статье будет рассматриваться преобразование сигналов из аналоговой формы в цифровую, в то время как ЦАП работает наоборот.

Определение

Прежде чем рассматривать принцип работы АЦП, давайте узнаем, что это за устройство. Аналого-цифровые преобразователи являются приборами, которые физическую величину превращают в соответствующее числовое представление.

В качестве начального параметра может выступать практически всё что угодно – ток, напряжение, емкость, сопротивление, угол поворота вала, частота импульсов и так далее. Но чтобы иметь определённость, мы будем работать только с одним преобразованием. Это “напряжение-код”. Выбор такого формата работы не случаен.

Ведь АЦП (принцип работы этого устройства) и его особенности в значительной мере зависят от того, какое понятие измерения используется. Под этим понимают процесс сравнения определённой величины с ранее установленным эталоном.

Характеристики АЦП

Основными можно назвать разрядность и частоту преобразования. Первую выражают в битах, а вторую – в отсчетах на секунду. Современные аналого-цифровые преобразователи могут обладать разрядностью 24 бита или скоростью преобразования, которая доходит до единиц GSPS.

Обратите внимание, что АЦП может одновременно предоставлять вам в использование только одну свою характеристику. Чем большие их показатели, тем сложнее работать с устройством, да и оно само стоит дороже.

Но благо можно получить необходимые показатели разрядности, пожертвовав скоростью работы прибора.

Типы АЦП

Принцип работы разнится у различных групп устройств. Мы рассмотрим следующие типы:

  1. С прямым преобразованием.
  2. С последовательным приближением.
  3. С параллельным преобразованием.
  4. Аналого-цифровой преобразователь с балансировкой заряда (дельта-сигма).
  5. Интегрирующие АЦП.

Есть много других конвейерных и комбинированных типов, которые обладают своими особенными характеристиками с разной архитектурой.

Но те образцы, которые будут рассматриваться в рамках статьи, представляют интерес благодаря тому, что они играют показательную роль в своей нише устройств такой специфики.

Поэтому давайте будем изучать принцип работы АЦП, а также его зависимость от физического устройства.

Прямые аналого-цифровые преобразователи

Они стали весьма популярными в 60-70-х годах прошлого столетия. В виде интегральных схем производятся с 80-х гг. Это весьма простые, даже примитивные устройства, которые не могут похвастаться значительными показателями. Их разрядность обычно составляет 6-8 бит, а скорость редко превышает 1 GSPS.

Принцип работы АЦП данного типа таков: на плюсовые входы компараторов одновременно поступает входной сигнал. На минусовые выводы подается напряжение определённой величины. А затем устройство определяет свой режим работы. Это делается благодаря опорному напряжению. Допустим, что у нас есть устройство, где 8 компараторов.

При подаче ½ опорного напряжения будет включено только 4 из них. Приоритетным шифратором сформируется двоичный код, который и зафиксируется выходным регистром. Относительно достоинств и недостатков можно сказать, что такой принцип работы позволяет создавать быстродействующие устройства.

Но для получения необходимой разрядности приходится сильно попотеть.

Общая формула количества компараторов выглядит таким образом: 2N. Под N необходимо поставить количество разрядов. Рассматриваемый ранее пример можно использовать ещё раз: 23=8. Итого для получения третьего разряда необходимо 8 компараторов. Таков принцип работы АЦП, которые были созданы первыми. Не очень удобно, поэтому в последующем появились другие архитектуры.

Аналого-цифровые преобразователи последовательного приближения

Здесь используется алгоритм «взвешивания». Сокращенно устройства, работающие по такой методике, называют просто АЦП последовательного счета. Принцип работы таков: устройством измеряется величина входного сигнала, а потом она сравнивается с числами, которые генерируются по определённой методике:

  1. Устанавливается половина возможного опорного напряжения.
  2. Если сигнал преодолел предел величины из пункта №1, то сравнивается с числом, которое лежит посредине между оставшимся значением. Так, в нашем случае это будет ¾ опорного напряжения. Если опорный сигнал не дотягивает до этого показателя, то сравнение будет проводиться с другой частью интервала по такому же принципу. В данном примере это ¼ опорного напряжения.
  3. Шаг 2 необходимо повторить Н раз, что даст нам Н бит результата. Это благодаря проведению Н количества сравнений.

Данный принцип работы позволяет получать устройства с относительной высокой скоростью преобразования, которыми и являются АЦП последовательного приближения. Принцип работы, как видите, прост, и данные приборы отлично подходят для различных случаев.

Параллельные аналого-цифровые преобразователи

Они работают подобно последовательным устройствам. Формула расчета – (2Н)-1. Для рассматриваемого ранее случая нам понадобится (23)-1 компараторов.

Для работы используется определённый массив этих устройств, каждое из которых может сравнивать входное и индивидуальное опорное напряжение. Параллельные аналого-цифровые преобразователи являются довольно быстрыми приборами.

Но принцип построения этих устройств таков, что для поддержки их работоспособности необходима значительная мощность. Поэтому использовать их при батарейном питании нецелесообразно.

Аналого-цифровой преобразователь с поразрядным уравновешиванием

Он действует по похожей схеме, что и предыдущее устройство. Поэтому чтобы объяснить функционирование АЦП поразрядного уравновешивания, принцип работы для начинающих будет рассмотрен буквально на пальцах. В основе данных устройств лежит явление дихотомии.

Иными словами, проводится последовательное сравнение измеряемой величины с определённой частью максимального значения. Могут браться значения в ½, 1/8, 1/16 и так далее. Поэтому аналого-цифровой преобразователь может выполнить весь процесс за Н итераций (последовательных шагов).

Причем Н равняется разрядности АЦП (посмотрите на ранее приведённые формулы). Таким образом, мы имеем значительный выигрыш во времени, если особенно важным является быстродействие техники.

Несмотря на значительную скорость, эти устройства также характеризуются низкой статической погрешностью.

Аналого-цифровые преобразователи с балансировкой заряда (дельта-сигма)

Это самый интересный тип устройства, не в последнюю очередь благодаря своему принципу работы. Он заключается в том, что происходит сравнение входного напряжения с тем, что накопилось интегратором.

На вход подаются импульсы с отрицательной или положительной полярностью (всё зависит от результата предыдущей операции). Таким образом, можно сказать, что подобный аналого-цифровой преобразователь является простой следящей системой.

Но это только как пример для сравнения, чтобы вы могли понимать, что такое дельта-сигма АЦП. Принцип работы системный, но для результативного функционирования этого аналого-цифрового преобразователя мало.

Конечным результатом является нескончаемый поток единиц и нулей, который идёт через цифровой ФНЧ. Из них формируется определённая битная последовательность. Различают АЦП-преобразователи первого и второго порядков.

Интегрирующие аналого-цифровые преобразователи

Это последний частный случай, который будет рассмотрен в рамках статьи. Далее мы будем описывать принцип работы данных устройств, но уже на общем уровне.

Этот АЦП является аналого-цифровым преобразователем с двухтактным интегрированием. Встретить подобное устройство можно в цифровом мультиметре.

И это не удивительно, ведь они обеспечивают высокую точность и одновременно хорошо подавляют помехи.

https://www.youtube.com/watch?v=-SG5Un55c8cu0026t=752s

Теперь давайте сосредоточимся на его принципе работы. Он заключается в том, что входным сигналом заряжается конденсатор на протяжении фиксированного времени.

Как правило, этот период составляет единицу частоты сети, которая питает устройство (50 Гц или 60 Гц). Также он может быть кратным. Таким образом, подавляются высокочастотные помехи.

Одновременно нивелируется влияние нестабильного напряжения сетевого источника получения электроэнергии на точность полученного результата.

Когда оканчивается время заряда аналого-цифрового преобразователя, конденсатор начинает разряжаться с определённой фиксированной скоростью. Внутренний счетчик устройства считает количество тактовых импульсов, которые формируются во время этого процесса. Таким образом, чем больше временной промежуток, тем значительнее показатели.

АЦП двухтактного интегрирования обладают высокой точностью и разрешающей способностью. Благодаря этому, а также сравнительно простой структуре построения они выполняются как микросхемы. Основной недостаток такого принципа работы – зависимость от показателя сети. Помните, что его возможности привязаны к длительности частотного периода источника питания.

Вот как устроен АЦП двойного интегрирования. Принцип работы данного устройства хотя и является довольно сложным, но он обеспечивает качественные показатели. В некоторых случаях такое бывает просто необходимым.

Выбираем АПЦ с необходимым нам принципом работы

Допустим, перед нами стоит определенная задача. Какое выбрать устройство, чтобы оно могло удовлетворить все наши запросы? Для начала давайте поговорим про разрешающую способность и точность. Очень часто их путают, хотя на практике они очень слабо зависят один от второго.

Запомните, что 12-разрядный аналого-цифровой преобразователь может иметь меньшую точность, чем 8-разрядный. В этом случае разрешение – это мера того, какое количество сегментов может быть выделено с входного диапазона измеряемого сигнала.

Так, 8-разрядные АЦП обладают 28=256 такими единицами.

Точность – это суммарное отклонение полученного результата преобразования от идеального значения, которое должно быть при данном входном напряжении.

То есть первый параметр характеризует потенциальные возможности, которые имеет АЦП, а второй показывает, что же мы имеем на практике.

Поэтому нам может подойти и более простой тип (например, прямые аналого-цифровые преобразователи), который позволит удовлетворить потребности благодаря высокой точности.

Чтобы иметь представление о том, что нужно, для начала необходимо просчитать физические параметры и построить математическую формулу взаимодействия.

Важными в них являются статические и динамические погрешности, ведь при использовании различных компонентов и принципов построение устройства они будут по-разному влиять на его характеристики.

Более детальную информацию можно обнаружить в технической документации, которую предлагает производитель каждого конкретного прибора.

Пример

Давайте рассмотрим АЦП SC9711. Принцип работы данного устройства сложен ввиду его размера и возможностей. Кстати, говоря о последних, необходимо заметить, что они по-настоящему разнообразные.

Так, к примеру, частота возможной работы колеблется от 10 Гц до 10 МГц. Иными словами, оно может делать 10 млн отсчетов в секунду! Да и само устройство не является чем-то цельным, а имеет модульную структуру построения.

Но используется оно, как правило, в сложной технике, где необходимо работать с большим количеством сигналов.

Заключение

Как видите, АЦП в своей основе имеют различные принципы работы. Это позволяет нам подбирать устройства, которые удовлетворят возникшие запросы, и при этом позволят разумно распорядиться имеющимися средствами.

Аналого-цифровые преобразователи (АЦП): назначение, устройство, применение

Сканеры это аналого цифровые преобразователи

Аналого-цифровые преобразователи (АЦП) — это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т. е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования.

Характеристика идеального квантования имеет вид, приведенный на рис. 3.92.

Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т. е. максимальная погрешность квантования равна ±0,5h (h — шаг квантования).

К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов — количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП.

Часто говорят о разрешающей способности АЦП, которую определяют величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (210 = 1024)−1, т. е. при шкале АЦП, соответствующей 10В, абсолютное значение шага квантования не превышает 10мВ. Время преобразования tпp — интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.

Характерными методами преобразования являются следующие: параллельного преобразования аналоговой величины и последовательного преобразования.

Ацп с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)

При Uвх = 0, поскольку для всех ОУ разность напряжений (U+ − U−) < 0 (U+, U− — напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Епит а на выходах кодирующего преобразователя (КП) Z0, Z1, Z2 устанавливаются нули.

Если Uвх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U+ − U−) > 0 и лишь на его выходе появляется напряжение +Епит, что приводит к появлению на выходах КП следующих сигналов: Z0 = 1, Z2 = Zl = 0.

Если Uвх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Епит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

Ацп с последовательным преобразованием входного сигнала

Это АЦП последовательного счета, который называют АЦП со следящей связью (рис. 3.94). В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал с которого обеспечивает изменение напряжения на выходе ЦАП.

Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе Uвх и на выходе ЦАП −U. Если входное напряжение Uвх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого счета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП.

В момент равенства Uвх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.

Метод последовательного преобразования реализуется и в АЦП время — импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения (ГЛИН)).

Принцип действия рассматриваемого АЦП рис. 3.95) основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения Uвх. Использованы следующие обозначения: СС — схема сравнения, ГИ — генератор импульсов, Кл — электронный ключ, Сч — счетчик импульсов.

Отмеченный во временной диаграмме момент времени t1 соответствует началу измерения входного напряжения, а момент времени t2 соответствует равенству входного напряжения и напряжения ГЛИН.

Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства Uвх и Uглин. Через UСч обозначено напряжение на входе счетчика.

Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.

Ацп с двойным интегрированием

Такой АЦП реализует метод последовательного преобразования входного сигнала (рис. 3.96). Использованы следующие обозначения: СУ — система управления, ГИ — генератор импульсов, Сч — счетчик импульсов.

Принцип действия АЦП состоит в определении отношения двух отрезков времени, в течение одного из которых выполняется интегрирование входного напряжения Uвх интегратором на основе ОУ (напряжение Uи на выходе интегратора изменяется от нуля до максимальной по модулю величины), а в течение следующего — интегрирование опорного напряжения Uоп (Uи меняется от максимальной по модулю величины до нуля) (рис. 3.97).
Пусть время t1 интегрирования входного сигнала постоянно, тогда чем больше второй отрезок времени t2 (отрезок времени, в течение которого интегрируется опорное напряжение), тем больше входное напряжение. Ключ КЗ предназначен для установки интегратора в исходное нулевое состояние.

В первый из указанных отрезков времени ключ К1 замкнут, ключ К2 разомкнут, а во второй, отрезок времени их состояние является обратным по отношению к указанному. Одновременно с замыканием ключа К2 импульсы с генератора импульсов ГИ начинают поступать через схему управления СУ на счетчик Сч.

Поступление этих импульсов заканчивается тогда, когда напряжение на выходе интегратора оказывается равным нулю.

Напряжение на выходе интегратора по истечении отрезка времени t1 определяется выражением

Uи(t1) = − ( 1/RC) · t1∫0Uвхdt= − ( Uвх · t1 ) / ( R·C)

Используя аналогичное выражение для отрезка времени t2, получим

t2 = − ( R·C/Uоп) ·Uи(t1)

Подставив сюда выражение для Uи(t1), получим t2 =( Uвх / Uоп)·t1 откуда Uвх = Uoa · t2/t1

Код на выходе счетчика определяет величину входного напряжения.

https://www.youtube.com/watch?v=vFk2MiHRlQou0026t=176s

Одним из основных преимуществ АЦП рассматриваемого типа является высокая помехозащищенность. Случайные выбросы входного напряжения, имеющие место в течение короткого времени, практически не оказывают влияния на погрешность преобразования. Недостаток АЦП — малое быстродействие.

Наиболее распространенными являются АЦП серий микросхем 572, 1107, 1138 и др. (табл. 3.3) Из таблицы видно, что наилучшим быстродействием обладает АЦП параллельного преобразования, а наихудшим — АЦП последовательного преобразования.

Предлагаем посмотреть ещё одно достойное видео о работе и устройстве АЦП:

Какие бывают виды сканеров и для чего нужно устройство

Сканеры это аналого цифровые преобразователи

Сканер – это устройство переноса информации с физического носителя в файл электронного формата на компьютере (скан документа). Конечным результатом работы сканера является полученный файл, который можно открыть на компьютере или другом электронном устройстве (телефоне, планшете).

Сканеры бывают разных видов, отличаются внешне, стоимостью и даже принципом действия.

Для чего нужен сканер

Сканирующая техника может использоваться для разных задач. Все зависит от области применения и конкретного типа сканера. Так, сканеры OR-кодов предназначены для считывания данных только с них. А вот планшетная техника может оцифровывать информацию с разных по типу носителей – листов бумаги, книг, пластика.

Часто применяются именно для сканирования документов (паспортов, свидетельств о рождении, справок, ИНН и других). Нередко устройства используются и в учебе для получения цифровых копий рефератов, методичек и т. д.

Как работает сканер

Принцип работы сканера практически идентичен для каждого вида и заключается в двух основных этапах:

  • считывания носителя и получение данных с него;
  • обработка полученной информации и создание готового изображения в цифровом виде, отправляемого на ПК.

Более подробно принцип описан на примере планшетного прибора:

  • на рабочую поверхность (прозрачное стекло) необходимой к сканированию стороной вниз кладется лист бумаги или другой материал;
  • на компьютере запускается одним из способов сканирование документа;
  • аппарат запустит в работу механизмы, после чего встроенный двигатель начнет перемещать лампу по всей области;
  • лампочка светит на носитель, информация начинает отражаться на систему зеркал, благодаря которым все данные попадают на аналого-цифровой преобразователь;
  • Информация отправляется в готовом виде на компьютер в соответствии с настройками, которые выставляются при старте сканирования (разрешение, цветность, формат файла и другие).

Готовый скан получается не за один шаг, а в множество проходов. За шаг сканируется лишь маленькая полоса информации. Затем, все полосы компонуются в одну, так отсканированный документ становится цельным.

Устройство сканера

Основным элементом, обеспечивающим весь процесс сканирования, является матрица, которая по типу делится на CCD и CIS.

  1. CDD матрица состоит из каретки, фоточувствительных элементов и лампочки, которая подсвечивает копируемый носитель. Отраженный свет попадает на линзы. Цветность достигается за счет разделения светового потока на составляющие цветового спектра и поступления на фотоэлементы. Сканеры с матрицами такого типа работают быстро, на выходе дают высококачественное изображение. Из-за конструктивных особенностей нет необходимости сильно прижимать крышку устройства, чтобы придавить носитель. Из недостатков выделяют наличие внешнего блока питания и необходимость частой замены лампочки.
  2. В CIS матрицах вместо лампочки предусмотрены светодиоды разных цветов. Светящие элементы во время прохождения каретки поочередно мигают, чем и достигается получения цветной картинки. Работают такие аппараты медленнее, чем CDD, но можно получить очень качественные цветные цифровые копии.

Виды сканеров

Планшетный. Является самым распространенным и привычным для обычного пользователя. Часто применяется дома и в офисах. Пользоваться очень легко. Достаточно подключиться к компу, установить драйвера и отсканировать нужные документы. Планшетный называется потому, что лист кладется на ровную поверхность – стекло сканера. Сверху рабочая область закрывается крышкой.

Сканируются многие виды носителей, от обычной листовой бумаги, до толстых книг. В последнем случае, из-за сильного надавливания крышки на книгу, повреждается переплет.

В серии «планшетные» входят также сканеры для паспортов, которыми можно обрабатывать документы небольших форматов – паспортов, чеков, визиток, удостоверений, и других носителей А5, А6.

Устройства могут быть как отдельными, так и входить в состав МФУ (многофункциональных устройств, 3 в 1) – принтер, сканер и копир в одном корпусе.

Протяжный. Внешне похож на обычный принтер, присутствует вход и выход для листа, который захватывается и протягивается через внутренние составляющие. Может сканировать с обеих сторон листа одновременно, что и является преимуществом над обычным планшетным видом. Сканирует только отдельные листы и стоимость техники больше в сравнении с обычным планшетным.

Ручной сканер. Портативное устройство, которое надо перемещать в процессе сканирования. Лист укладывается на ровную поверхность, устройство прислоняется к бумаге и постепенно с одной скоростью аппарат перемещается рукой по всему носителю.

Зарядка и передача файлов на компьютер производится через USB-шнур. Объем хранимых файлов внутри такого вида сканера зависит от количества памяти. При необходимости объем можно расширить картой памяти.

Единственное достоинство заключается в мобильности и относительной дешевизне. Можно взять с собой и когда понадобится сделать скан-копию. К недостаткам относятся качество и необходимость в некой четкости в работе с техникой- надо приловчиться ровно и плавно передвигать прибор.

К ручным также относятся:

  • OR-сканеры;
  • для сканирования штрих-кодов;
  • сканеры переводчики.

Функция распознавания OR-кодов есть во многих современных телефонах по умолчанию или после установки специального приложения для поставленной задачи.

Сканер фотопленок. Предназначен для сканирования пленок, слайдов. Не может считывать непрозрачные материалы.

Планетарный сканер. Нужен для оцифровки старинных или уже ветхих книг, рукописей. Принцип сканирования не предполагает физического контакта со сканирующим предметом.

Поточный сканер (скоростной). Профессиональная техника, применяется в больших офисах и на предприятиях, где необходимо сканировать много и быстро. Есть функция автоматической подачи документов и вместительный лоток. За одну минуту позволят отсканировать до двух сотен листов. Возможна поддержка увеличенных форматов, например, А3.

Барабанные сканеры. Нашли применение в полиграфической индустрии. Сканируемый носитель крепится на внешней или внутренней стороне вала. Характеризуется высочайшим качеством оцифровки благодаря большому разрешению.

Чем отличается от принтера и копира

Основное отличие от каждого вида устройств заключается в конечном результате от работы техники.

  1. Принтер переносит информацию с электронного носителя на реальный – бумажный или другой (текстиль, пластик, пленка – зависит от вида принтера). Читайте про принцип работы принтера.
  2. Сканер, наоборот, переносит с физического материала в электронный документ.
  3. Копир (ксерокс). По технологии работы чем-то похож на сканер. На первом этапе происходит считывание носителя. Дальше происходит перенос на бумагу через встроенное печатающее устройство. Простыми словами, ксерокс делает точную копию исходного документа.

Копир является независимым устройством, которое может работать без подключения сторонних девайсов. Управление техникой выполняется через панель на корпусе. Для работы достаточно, чтобы ксерокс был исправным, и наличие бумаги в лотке.

Сканер всегда требует сопряжения с компьютером – физическое или беспроводное соединение, установка и, при необходимости, настройка программного обеспечения.

Принтер же может работать как автономно, так и только через компьютер. Возможности прямо зависят от модели и цены принтера. Во многих современных моделях можно печатать с флешки или подключать телефон к принтеру через разные программы, обходясь при этом без ПК.

Как сделать сканирование

  1. Сделайте подключение и добавление сканера в Windows. Независимо от того, какой тип устройства у вас, все действия будут одинаковыми. Сначала соедините USB-кабелем сканер с компом. Подключите через кабель аппарат в сеть 220В. Нажмите на кнопку включения, которая практически всегда находится рядом кнопками управления на корпусе.

    Windows может сразу обнаружить, распознать периферийное устройство и сама инсталлировать «дрова». Если установка сама не пошла, тогда надо сделать установку с диска, который шел в комплекте, или скачать с официального сайта производителя.

    О готовности техники к выполнению своей функции будет говорить наличие значка оборудования в окне «Устройства и принтеры» и отсутствие возле него каки-либо предупреждающих иконок. Нажмите комбинацию клавиш «Windows+R» и выполните команду «control printers». Убедитесь, что сканер находится в доступном оборудовании.

  2. Далее можно попробовать отсканировать что-либо. Поднимите крышку, положите лист на стекло вниз то стороной, которая нуждается в сканировании.
  3. Правой кнопкой мышки кликните на значок и выберите «Начать сканирование».

  4. Откроется мастер работы со сканером, внешний вид, меню и количество настроек которого может отличаться в зависимости от производителя и модели.
  5. При необходимости. Можете выставить любые доступные параметры на свое усмотрение. После, нажмите «Сканировать» и дождитесь завершения создания скан-копии.

  6. Назовите файл и сохраните в удобное место на компьютере.

Есть и другие варианты, как сканировать документы с принтера на компьютер. Можно использовать стороннее программное обеспечение или встроенные средства операционной системы Windows. Например, графический редактор Paint тоже позволяет отсканировать в несколько кликов мыши.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.